| Predicted Trait | |
| Reported Trait | Platelet crit | 
| Mapped Trait(s) | platelet crit (EFO_0007985) | 
| Additional Trait Information | https://biobankengine.stanford.edu/RIVAS_HG19/snpnet/INI30090 | 
| Score Construction | |
| PGS Name | GBE_INI30090 | 
| Development Method | |
| Name | snpnet | 
| Parameters | NR | 
| Variants | |
| Original Genome Build | GRCh37 | 
| Number of Variants | 20,910 | 
| Effect Weight Type | NR | 
| PGS Source | |
| PGS Catalog Publication (PGP) ID | PGP000244 | 
| Citation (link to publication) | Tanigawa Y et al. PLoS Genet (2022) | 
| Ancestry Distribution | |
| Score Development/Training | European: 100% 262,211 individuals (100%)  | 
| PGS Evaluation | European: 40% African: 20% East Asian: 20% South Asian: 20% 5 Sample Sets  | 
| Study Identifiers | Sample Numbers | Sample Ancestry | Cohort(s) | Phenotype Definitions & Methods | Age of Study Participants | Participant Follow-up Time | Additional Ancestry Description | Additional Sample/Cohort Information | 
|---|---|---|---|---|---|---|---|---|
| — | 262,211 individuals | European | UKB | — | — | — | white British ancestry | Training + validation cohort (train_val) | 
| 
                          PGS Performance Metric ID (PPM)  | 
                    
                        
                          PGS Sample Set ID (PSS)  | 
                    
                        Performance Source | Trait | 
                          PGS Effect Sizes (per SD change)  | 
                    
                        Classification Metrics | Other Metrics | Covariates Included in the Model | 
                          PGS Performance: Other Relevant Information  | 
                    
                    
|---|---|---|---|---|---|---|---|---|
| PPM007040 | PSS006951| African Ancestry| 6,139 individuals  | 
                        
                            PGP000244 | Tanigawa Y et al. PLoS Genet (2022)  | 
                        
                            Reported Trait: Platelet crit | — | — | R²: 0.1382 [0.12263, 0.15377] Incremental R2 (full-covars): 0.02064 PGS R2 (no covariates): 0.0286 [0.02062, 0.03659]  | 
                        
                            age, sex, UKB array type, Genotype PCs | — | 
| PPM007041 | PSS006952| East Asian Ancestry| 1,655 individuals  | 
                        
                            PGP000244 | Tanigawa Y et al. PLoS Genet (2022)  | 
                        
                            Reported Trait: Platelet crit | — | — | R²: 0.15738 [0.1257, 0.18906] Incremental R2 (full-covars): 0.08366 PGS R2 (no covariates): 0.07725 [0.05295, 0.10155]  | 
                        
                            age, sex, UKB array type, Genotype PCs | — | 
| PPM007042 | PSS006953| European Ancestry| 24,171 individuals  | 
                        
                            PGP000244 | Tanigawa Y et al. PLoS Genet (2022)  | 
                        
                            Reported Trait: Platelet crit | — | — | R²: 0.23874 [0.2295, 0.24797] Incremental R2 (full-covars): 0.16467 PGS R2 (no covariates): 0.16697 [0.15852, 0.17543]  | 
                        
                            age, sex, UKB array type, Genotype PCs | — | 
| PPM007043 | PSS006954| South Asian Ancestry| 7,519 individuals  | 
                        
                            PGP000244 | Tanigawa Y et al. PLoS Genet (2022)  | 
                        
                            Reported Trait: Platelet crit | — | — | R²: 0.23898 [0.2225, 0.25545] Incremental R2 (full-covars): 0.10472 PGS R2 (no covariates): 0.10873 [0.09572, 0.12174]  | 
                        
                            age, sex, UKB array type, Genotype PCs | — | 
| PPM007044 | PSS006955| European Ancestry| 65,601 individuals  | 
                        
                            PGP000244 | Tanigawa Y et al. PLoS Genet (2022)  | 
                        
                            Reported Trait: Platelet crit | — | — | R²: 0.24748 [0.24183, 0.25313] Incremental R2 (full-covars): 0.16016 PGS R2 (no covariates): 0.16141 [0.15632, 0.16649]  | 
                        
                            age, sex, UKB array type, Genotype PCs | — | 
| 
                          PGS Sample Set ID (PSS)  | 
                    
                        Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information | 
|---|---|---|---|---|---|---|---|---|
| PSS006951 | — | — | 6,139 individuals | — | African unspecified | — | UKB | — | 
| PSS006952 | — | — | 1,655 individuals | — | East Asian | — | UKB | — | 
| PSS006953 | — | — | 24,171 individuals | — | European | non-white British ancestry | UKB | — | 
| PSS006954 | — | — | 7,519 individuals | — | South Asian | — | UKB | — | 
| PSS006955 | — | — | 65,601 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |