| Predicted Trait | |
| Reported Trait | Red blood cell count |
| Mapped Trait(s) | erythrocyte count (EFO_0004305) |
| Additional Trait Information | https://biobankengine.stanford.edu/RIVAS_HG19/snpnet/INI30010 |
| Score Construction | |
| PGS Name | GBE_INI30010 |
| Development Method | |
| Name | snpnet |
| Parameters | NR |
| Variants | |
| Original Genome Build | GRCh37 |
| Number of Variants | 20,480 |
| Effect Weight Type | NR |
| PGS Source | |
| PGS Catalog Publication (PGP) ID | PGP000244 |
| Citation (link to publication) | Tanigawa Y et al. PLoS Genet (2022) |
| Ancestry Distribution | |
| Score Development/Training | European: 100% 262,325 individuals (100%) |
| PGS Evaluation | European: 40% African: 20% East Asian: 20% South Asian: 20% 5 Sample Sets |
| Study Identifiers | Sample Numbers | Sample Ancestry | Cohort(s) | Phenotype Definitions & Methods | Age of Study Participants | Participant Follow-up Time | Additional Ancestry Description | Additional Sample/Cohort Information |
|---|---|---|---|---|---|---|---|---|
| — | 262,325 individuals | European | UKB | — | — | — | white British ancestry | — |
|
PGS Performance Metric ID (PPM) |
PGS Sample Set ID (PSS) |
Performance Source | Trait |
PGS Effect Sizes (per SD change) |
Classification Metrics | Other Metrics | Covariates Included in the Model |
PGS Performance: Other Relevant Information |
|---|---|---|---|---|---|---|---|---|
| PPM008709 | PSS006896| African Ancestry| 6,139 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Red blood cell count | — | — | R²: 0.26906 [0.25063, 0.28749] Incremental R2 (full-covars): 0.01652 PGS R2 (no covariates): 0.01819 [0.01175, 0.02463] |
age, sex, UKB array type, Genotype PCs | — |
| PPM008710 | PSS006897| East Asian Ancestry| 1,655 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Red blood cell count | — | — | R²: 0.32546 [0.289, 0.36193] Incremental R2 (full-covars): 0.04519 PGS R2 (no covariates): 0.05665 [0.03538, 0.07793] |
age, sex, UKB array type, Genotype PCs | — |
| PPM008711 | PSS006898| European Ancestry| 24,175 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Red blood cell count | — | — | R²: 0.37954 [0.37005, 0.38904] Incremental R2 (full-covars): 0.10462 PGS R2 (no covariates): 0.11155 [0.10418, 0.11892] |
age, sex, UKB array type, Genotype PCs | — |
| PPM008712 | PSS006899| South Asian Ancestry| 7,520 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Red blood cell count | — | — | R²: 0.33598 [0.31894, 0.35302] Incremental R2 (full-covars): 0.05745 PGS R2 (no covariates): 0.05295 [0.0433, 0.0626] |
age, sex, UKB array type, Genotype PCs | — |
| PPM008713 | PSS006900| European Ancestry| 65,638 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Red blood cell count | — | — | R²: 0.37344 [0.36766, 0.37922] Incremental R2 (full-covars): 0.11681 PGS R2 (no covariates): 0.11784 [0.11327, 0.12241] |
age, sex, UKB array type, Genotype PCs | — |
|
PGS Sample Set ID (PSS) |
Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information |
|---|---|---|---|---|---|---|---|---|
| PSS006896 | — | — | 6,139 individuals | — | African unspecified | — | UKB | — |
| PSS006897 | — | — | 1,655 individuals | — | East Asian | — | UKB | — |
| PSS006898 | — | — | 24,175 individuals | — | European | non-white British ancestry | UKB | — |
| PSS006899 | — | — | 7,520 individuals | — | South Asian | — | UKB | — |
| PSS006900 | — | — | 65,638 individuals | — | European | white British ancestry | UKB | Testing cohort (heldout set) |