Experimental Factor Ontology (EFO) Information | |
Identifier | EFO_0004274 |
Description | A condition characterized by painful swelling of the joints, which is caused by deposition of urate crystals. [NCIT: C34650] | Trait category |
Metabolic disorder
|
Synonyms |
4 synonyms
|
Mapped terms |
18 mapped terms
|
Polygenic Score ID & Name | PGS Publication ID (PGP) | Reported Trait | Mapped Trait(s) (Ontology) | Number of Variants | Ancestry distribution | Scoring File (FTP Link) |
---|---|---|---|---|---|---|
PGS000199 (G-PROB_Gout) |
PGP000081 | Knevel R et al. Sci Transl Med (2020) |
Gout | gout | 250 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000199/ScoringFiles/PGS000199.txt.gz |
PGS000711 (HC328) |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Gout | gout | 183,332 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000711/ScoringFiles/PGS000711.txt.gz |
PGS001248 (GBE_HC328) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Gout | gout | 880 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001248/ScoringFiles/PGS001248.txt.gz |
PGS001249 (GBE_HC1215) |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Gout (time-to-event) | gout | 1,796 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001249/ScoringFiles/PGS001249.txt.gz |
PGS001789 (1kgeur_gbmi_leaveUKBBout_Gout_pst_eff_a1_b0.5_phiauto) |
PGP000262 | Wang Y et al. Cell Genom (2023) |
Gout | gout | 910,151 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001789/ScoringFiles/PGS001789.txt.gz |
PGS001822 (portability-PLR_274.1) |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Gout | gout | 216 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001822/ScoringFiles/PGS001822.txt.gz |
PGS002030 (portability-ldpred2_274.1) |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Gout | gout | 163,210 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002030/ScoringFiles/PGS002030.txt.gz |
PGS002307 (PRS33_gout) |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Gout | gout | 33 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002307/ScoringFiles/PGS002307.txt.gz |
PGS002762 (Urate_prscs) |
PGP000364 | Mars N et al. Am J Hum Genet (2022) |
Gout | gout | 1,092,214 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002762/ScoringFiles/PGS002762.txt.gz |
PGS003329 (PRS19_gout) |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Gout | gout | 19 | - |
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003329/ScoringFiles/PGS003329.txt.gz |
PGS Performance Metric ID (PPM) |
Evaluated Score |
PGS Sample Set ID (PSS) |
Performance Source | Trait |
PGS Effect Sizes (per SD change) |
Classification Metrics | Other Metrics | Covariates Included in the Model |
PGS Performance: Other Relevant Information |
---|---|---|---|---|---|---|---|---|---|
PPM000582 | PGS000199 (G-PROB_Gout) |
PSS000311| European Ancestry| 243 individuals |
PGP000081 | Knevel R et al. Sci Transl Med (2020) |
Reported Trait: Gout diagnosis in patient with arthritis | — | AUROC: 0.85 [0.8, 0.91] | — | — | (Setting III: Selecting patients presenting with inflammatory arthritis at their first visit) |
PPM000576 | PGS000199 (G-PROB_Gout) |
PSS000310| European Ancestry| 245 individuals |
PGP000081 | Knevel R et al. Sci Transl Med (2020) |
Reported Trait: Gout diagnosis in patient with arthritis | — | AUROC: 0.82 [0.73, 0.94] | — | — | (Setting II: Assigning patient diagnoses based on medical records) |
PPM000570 | PGS000199 (G-PROB_Gout) |
PSS000320| Multi-ancestry (including European)| 1,211 individuals |
PGP000081 | Knevel R et al. Sci Transl Med (2020) |
Reported Trait: Gout diagnosis in patient with arthritis | — | AUROC: 0.78 [0.75, 0.8] | — | — | (Setting I: Assigning patient diagnoses based on billing codes) |
PPM001603 | PGS000711 (HC328) |
PSS000815| European Ancestry| 87,413 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Gout | — | AUROC: 0.7107 | — | Age, sex, PCs(1-10) | — |
PPM001616 | PGS000711 (HC328) |
PSS000816| European Ancestry| 135,300 individuals |
PGP000128 | Sinnott-Armstrong N et al. Nat Genet (2021) |
Reported Trait: Gout | HR: 1.58 [1.51, 1.65] | C-index: 0.673 | — | Age as time scale, sex, batch, PCs(1-10) | — |
PPM008749 | PGS001248 (GBE_HC328) |
PSS004452| African Ancestry| 6,497 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Gout | — | AUROC: 0.8285 [0.79138, 0.86562] | R²: 0.15624 Incremental AUROC (full-covars): 0.01741 PGS R2 (no covariates): 0.02051 PGS AUROC (no covariates): 0.62118 [0.56505, 0.67731] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008750 | PGS001248 (GBE_HC328) |
PSS004453| East Asian Ancestry| 1,704 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Gout | — | AUROC: 0.84973 [0.79458, 0.90489] | R²: 0.22864 Incremental AUROC (full-covars): 0.02603 PGS R2 (no covariates): 0.04315 PGS AUROC (no covariates): 0.65938 [0.56975, 0.74901] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008751 | PGS001248 (GBE_HC328) |
PSS004454| European Ancestry| 24,905 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Gout | — | AUROC: 0.83619 [0.82126, 0.85113] | R²: 0.17414 Incremental AUROC (full-covars): 0.02904 PGS R2 (no covariates): 0.03561 PGS AUROC (no covariates): 0.66092 [0.63744, 0.6844] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008752 | PGS001248 (GBE_HC328) |
PSS004455| South Asian Ancestry| 7,831 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Gout | — | AUROC: 0.77913 [0.74649, 0.81177] | R²: 0.11671 Incremental AUROC (full-covars): 0.03258 PGS R2 (no covariates): 0.0283 PGS AUROC (no covariates): 0.63533 [0.59256, 0.6781] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008753 | PGS001248 (GBE_HC328) |
PSS004456| European Ancestry| 67,425 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: Gout | — | AUROC: 0.81572 [0.80628, 0.82516] | Incremental AUROC (full-covars): 0.04061 PGS R2 (no covariates): 0.04014 R²: 0.15436 PGS AUROC (no covariates): 0.66908 [0.65556, 0.6826] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008754 | PGS001249 (GBE_HC1215) |
PSS004203| African Ancestry| 6,497 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: TTE gout | — | AUROC: 0.77537 [0.73576, 0.81498] | R²: 0.12063 Incremental AUROC (full-covars): 0.01433 PGS R2 (no covariates): 0.01201 PGS AUROC (no covariates): 0.58952 [0.54447, 0.63458] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008755 | PGS001249 (GBE_HC1215) |
PSS004204| East Asian Ancestry| 1,704 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: TTE gout | — | AUROC: 0.8503 [0.79897, 0.90164] | R²: 0.23863 Incremental AUROC (full-covars): 0.01971 PGS R2 (no covariates): 0.02733 PGS AUROC (no covariates): 0.62617 [0.54055, 0.7118] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008756 | PGS001249 (GBE_HC1215) |
PSS004205| European Ancestry| 24,905 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: TTE gout | — | AUROC: 0.81772 [0.80388, 0.83156] | R²: 0.17135 Incremental AUROC (full-covars): 0.02929 PGS R2 (no covariates): 0.03724 PGS AUROC (no covariates): 0.65807 [0.63913, 0.67702] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008757 | PGS001249 (GBE_HC1215) |
PSS004206| South Asian Ancestry| 7,831 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: TTE gout | — | AUROC: 0.76492 [0.73884, 0.79099] | PGS AUROC (no covariates): 0.61344 [0.57941, 0.64746] R²: 0.11928 Incremental AUROC (full-covars): 0.02377 PGS R2 (no covariates): 0.02209 |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM008758 | PGS001249 (GBE_HC1215) |
PSS004207| European Ancestry| 67,425 individuals |
PGP000244 | Tanigawa Y et al. PLoS Genet (2022) |
Reported Trait: TTE gout | — | AUROC: 0.79258 [0.7842, 0.80095] | R²: 0.14867 Incremental AUROC (full-covars): 0.03784 PGS R2 (no covariates): 0.03919 PGS AUROC (no covariates): 0.65389 [0.64293, 0.66484] |
age, sex, UKB array type, Genotype PCs | Full Model & PGS R2 is estimated using Nagelkerke's method |
PPM009309 | PGS001789 (1kgeur_gbmi_leaveUKBBout_Gout_pst_eff_a1_b0.5_phiauto) |
PSS007699| African Ancestry| 6,206 individuals |
PGP000262 | Wang Y et al. Cell Genom (2023) |
Reported Trait: Gout | — | AUROC: 0.805 | Nagelkerke's R2 (covariates regressed out): 0.01073 | sex,age,age2,age*sex,age^2*sex, 20PCs | — |
PPM009293 | PGS001789 (1kgeur_gbmi_leaveUKBBout_Gout_pst_eff_a1_b0.5_phiauto) |
PSS007712| European Ancestry| 359,345 individuals |
PGP000262 | Wang Y et al. Cell Genom (2023) |
Reported Trait: Gout | — | AUROC: 0.807 | Nagelkerke's R2 (covariates regressed out): 0.03121 | sex,age,age2,age*sex,age^2*sex, 20PCs | — |
PPM009304 | PGS001789 (1kgeur_gbmi_leaveUKBBout_Gout_pst_eff_a1_b0.5_phiauto) |
PSS007703| Additional Asian Ancestries| 8,184 individuals |
PGP000262 | Wang Y et al. Cell Genom (2023) |
Reported Trait: Gout | — | AUROC: 0.78 | Nagelkerke's R2 (covariates regressed out): 0.00748 | sex,age,age2,age*sex,age^2*sex, 20PCs | — |
PPM009476 | PGS001822 (portability-PLR_274.1) |
PSS009292| European Ancestry| 19,983 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0364 [0.0226, 0.0503] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009477 | PGS001822 (portability-PLR_274.1) |
PSS009066| European Ancestry| 4,135 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.043 [0.0125, 0.0735] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009478 | PGS001822 (portability-PLR_274.1) |
PSS008620| European Ancestry| 6,655 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0538 [0.0297, 0.0777] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009479 | PGS001822 (portability-PLR_274.1) |
PSS008396| Greater Middle Eastern Ancestry| 1,200 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0122 [-0.0449, 0.0692] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009480 | PGS001822 (portability-PLR_274.1) |
PSS008174| South Asian Ancestry| 6,325 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0166 [-0.008, 0.0413] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009481 | PGS001822 (portability-PLR_274.1) |
PSS007961| East Asian Ancestry| 1,810 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0287 [-0.0176, 0.075] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009482 | PGS001822 (portability-PLR_274.1) |
PSS007742| African Ancestry| 2,480 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0314 [-0.0082, 0.0708] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM009483 | PGS001822 (portability-PLR_274.1) |
PSS008845| African Ancestry| 3,918 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0294 [-0.002, 0.0607] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011116 | PGS002030 (portability-ldpred2_274.1) |
PSS008620| European Ancestry| 6,655 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0476 [0.0236, 0.0716] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011114 | PGS002030 (portability-ldpred2_274.1) |
PSS009292| European Ancestry| 19,983 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0415 [0.0277, 0.0554] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011115 | PGS002030 (portability-ldpred2_274.1) |
PSS009066| European Ancestry| 4,135 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.047 [0.0165, 0.0775] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011117 | PGS002030 (portability-ldpred2_274.1) |
PSS008396| Greater Middle Eastern Ancestry| 1,200 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): -0.0053 [-0.0623, 0.0518] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011118 | PGS002030 (portability-ldpred2_274.1) |
PSS008174| South Asian Ancestry| 6,325 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0231 [-0.0015, 0.0478] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011119 | PGS002030 (portability-ldpred2_274.1) |
PSS007961| East Asian Ancestry| 1,810 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0262 [-0.0201, 0.0725] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011120 | PGS002030 (portability-ldpred2_274.1) |
PSS007742| African Ancestry| 2,480 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0336 [-0.006, 0.073] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM011121 | PGS002030 (portability-ldpred2_274.1) |
PSS008845| African Ancestry| 3,918 individuals |
PGP000263 | Privé F et al. Am J Hum Genet (2022) |
Reported Trait: Gout | — | — | Partial Correlation (partial-r): 0.0254 [-0.006, 0.0568] | sex, age, birth date, deprivation index, 16 PCs | — |
PPM013045 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout | — | — | Hazard Ratio (HR, highest vs. lowest tertile): 1.77 [1.66, 1.89] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI) | — |
PPM013046 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout without cardiometabolic diseases | — | — | Hazard Ratio (HR, highest vs. lowest tertile): 4.94 [3.91, 6.23] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI), Unfavorable lifestyle | — |
PPM013047 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout with cardiometabolic diseases | — | — | Hazard Ratio (HR, highest vs. lowest tertile): 3.0 [2.62, 3.43] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI), Unfavorable lifestyle | — |
PPM013048 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout | — | — | Hazard Ratio (HR, middle vs. lowest tertile): 1.53 [1.35, 1.74] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI), favorable lifestyle | — |
PPM013049 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout | — | — | Hazard Ratio (HR, middle vs. lowest tertile): 2.39 [2.12, 2.7] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI), unfavorable lifestyle | — |
PPM013050 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout | — | — | Hazard Ratio (HR, highest vs. lowest tertile): 1.98 [1.75, 2.24] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI), favorable lifestyle | — |
PPM013044 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout | — | — | Hazard Ratio (HR, middle vs. lowest tertile): 1.44 [1.35, 1.54] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI) | — |
PPM013051 | PGS002307 (PRS33_gout) |
PSS009665| European Ancestry| 416,481 individuals |
PGP000329 | Zhang Y et al. BMC Med (2022) |
Reported Trait: Incident gout | — | — | Hazard Ratio (HR, highest vs. lowest tertile): 3.13 [2.79, 3.52] | Sex, age, socioeconomic status, education level, C-reactive protein, serum creatinine, cholesterol, triglyceride, cardiovascular disease, diabetes, hypertension, genetic risk, each lifestyle factor, and body mass index (BMI), unfavorable lifestyle | — |
PPM014962 | PGS002762 (Urate_prscs) |
PSS009939| European Ancestry| 39,444 individuals |
PGP000364 | Mars N et al. Am J Hum Genet (2022) |
Reported Trait: Gout | OR: 1.69 [1.6, 1.78] | — | — | age, sex, 10 PCs, technical covariates | — |
PPM016117 | PGS003329 (PRS19_gout) |
PSS010039| European Ancestry| 5,522 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Age at onset of gout (in men) | β: -3.61 [-4.32, -2.9] | — | — | 10 Global PCs | — |
PPM016120 | PGS003329 (PRS19_gout) |
PSS010039| European Ancestry| 5,522 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Tophaceous Disease (in men) | β: 1.15 [1.0, 1.31] | — | — | 10 Global PCs | — |
PPM016123 | PGS003329 (PRS19_gout) |
PSS010039| European Ancestry| 5,522 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Age at onset of gout (in women) | β: 0.07 [-2.32, 2.45] | — | — | 10 Global PCs | — |
PPM016126 | PGS003329 (PRS19_gout) |
PSS010039| European Ancestry| 5,522 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Tophaceous Disease (in women) | β: 0.68 [0.42, 1.1] | — | — | 10 Global PCs | — |
PPM016119 | PGS003329 (PRS19_gout) |
PSS010040| Additional Diverse Ancestries| 869 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Age at onset of gout (in men) | β: -3.51 [-5.46, -1.57] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PPM016121 | PGS003329 (PRS19_gout) |
PSS010038| Additional Diverse Ancestries| 1,386 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Tophaceous Disease (in men) | β: 2.6 [1.66, 4.06] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PPM016122 | PGS003329 (PRS19_gout) |
PSS010040| Additional Diverse Ancestries| 869 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Tophaceous Disease (in men) | β: 1.53 [1.07, 2.19] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PPM016124 | PGS003329 (PRS19_gout) |
PSS010038| Additional Diverse Ancestries| 1,386 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Age at onset of gout (in women) | β: 0.2 [-7.21, 7.62] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PPM016125 | PGS003329 (PRS19_gout) |
PSS010040| Additional Diverse Ancestries| 869 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Age at onset of gout (in women) | β: -3.33 [-9.28, 2.62] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PPM016127 | PGS003329 (PRS19_gout) |
PSS010038| Additional Diverse Ancestries| 1,386 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Tophaceous Disease (in women) | β: 1.45 [0.39, 5.36] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PPM016118 | PGS003329 (PRS19_gout) |
PSS010038| Additional Diverse Ancestries| 1,386 individuals |
PGP000394 | Sumpter NA et al. Arthritis Rheumatol (2022) |
Reported Trait: Age at onset of gout (in men) | β: -6.35 [-8.91, -3.8] | — | — | 10 Global PCs + 10 Oceanian PCs | — |
PGS Sample Set ID (PSS) |
Phenotype Definitions and Methods | Participant Follow-up Time | Sample Numbers | Age of Study Participants | Sample Ancestry | Additional Ancestry Description | Cohort(s) | Additional Sample/Cohort Information |
---|---|---|---|---|---|---|---|---|
PSS000815 | — | — | 87,413 individuals | — | European | — | UKB | — |
PSS000816 | ICD-10 M10 | — | [
|
— | European (Finnish) |
— | FinnGen | — |
PSS009292 | — | — | 19,983 individuals | — | European | UK (+ Ireland) | UKB | — |
PSS008396 | — | — | 1,200 individuals | — | Greater Middle Eastern (Middle Eastern, North African or Persian) | Iran (Middle East) | UKB | — |
PSS009066 | — | — | 4,135 individuals | — | European | Poland (NE Europe) | UKB | — |
PSS000310 | Setting II: Based on ICD codes and review of medical records from Partners HealthCare Biobank; controls = other non-matching arthritis diseases | Median = 8.0 years | [ ,
32.0 % Male samples |
— | European | — | PHB | — |
PSS000311 | Setting III: Based on ICD codes and final diagnosis in medical records from Partners HealthCare Biobank; controls = other non-matching arthritis diseases | Median = 7.0 years | [ ,
32.0 % Male samples |
— | European | — | PHB | — |
PSS004452 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS004453 | — | — | [
|
— | East Asian | — | UKB | — |
PSS004454 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS004455 | — | — | [
|
— | South Asian | — | UKB | — |
PSS004456 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS008174 | — | — | 6,325 individuals | — | South Asian | India (South Asia) | UKB | — |
PSS004203 | — | — | [
|
— | African unspecified | — | UKB | — |
PSS004204 | — | — | [
|
— | East Asian | — | UKB | — |
PSS000320 | Setting I: Based on ICD codes and expert opinion (ACR2010 criteria), in eMERGE network EMR database from Stanaway 2018; controls = other non-matching arthritis diseases | Median = 16.0 years | [ ,
43.0 % Male samples |
— | European, African unspecified, Asian unspecified, NR | Primarily European, African and Asian ancestry | eMERGE | — |
PSS004205 | — | — | [
|
— | European | non-white British ancestry | UKB | — |
PSS004206 | — | — | [
|
— | South Asian | — | UKB | — |
PSS004207 | — | — | [
|
— | European | white British ancestry | UKB | Testing cohort (heldout set) |
PSS007699 | — | — | [
|
— | African unspecified | Africa or admixed-ancestry diaspora | UKB | — |
PSS007703 | — | — | [
|
— | Asian unspecified | Central and South Asian | UKB | — |
PSS008845 | — | — | 3,918 individuals | — | African unspecified | Nigeria (West Africa) | UKB | — |
PSS007712 | — | — | [
|
— | European | — | UKB | — |
PSS007961 | — | — | 1,810 individuals | — | East Asian | China (East Asia) | UKB | — |
PSS010038 | — | — | [
|
— | Oceanian | Aotearoa NZ Maori and Cook Island Maori ancestry | NR | East Polynesian |
PSS010039 | — | — | [
|
— | European | — | CLEAR | Australia and Aotearoa New Zealand cohort, GlobalGout, LASSO, CRYSTAL, LIGHT |
PSS010040 | — | — | [
|
— | Oceanian | Samoan, Tongan, Niuean, Tokelauan and Pukapukan | NR | West Polynesian |
PSS009939 | — | — | 39,444 individuals | — | European (Finnish) |
— | FinnGen | — |
PSS008620 | — | — | 6,655 individuals | — | European | Italy (South Europe) | UKB | — |
PSS009665 | Gout was ascertained based on information from self- report (Data-Field 20002, code: 1466), medical records (ICD-10 codes: M10.0, M10.2, M10.3, M10.4, M10.9), and death records (ICD-10 codes: M10.0, M10.2, M10.3, M10.4, M10.9) | Median = 12.1 years | [ ,
45.9 % Male samples |
Mean = 56.6 years Sd = 8.0 years |
European | — | UKB | — |
PSS007742 | — | — | 2,480 individuals | — | African American or Afro-Caribbean | Carribean | UKB | — |