Trait: amount

Trait Information
Identifier PATO_0000070
Description
  • The number of entities of this type that are part of the whole organism.
  • This term was originally named "presence". It has been renamed to reduce ambiguity. Consider annotating with the reciprocal relation,PATO:0001555, has_number_of. For example, rather than E=fin ray Q=count in organism C=10, say E=organism Q=has number of E2= fin ray C=10.
Trait category
Other measurement
Child trait(s) 16 child traits

Associated Polygenic Score(s)

Filter PGS by Participant Ancestry
Individuals included in:
G - Source of Variant Associations (GWAS)
D - Score Development/Training
E - PGS Evaluation
List of ancestries includes:
Display options:
Ancestry legend
Multi-ancestry (including European)
Multi-ancestry (excluding European)
African
East Asian
South Asian
Additional Asian Ancestries
European
Greater Middle Eastern
Hispanic or Latin American
Additional Diverse Ancestries
Not Reported
Note: This table shows PGS for child terms of "amount" in the EFO hierarchy.
Polygenic Score ID & Name PGS Publication ID (PGP) Reported Trait Mapped Trait(s) (Ontology) Number of Variants Ancestry distribution
GWAS
Dev
Eval
Scoring File (FTP Link)
PGS000113
(wbc)
PGP000051 |
Xu Y et al. Cell Genom (2022)
White blood cell count leukocyte quantity 28,383
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000113/ScoringFiles/PGS000113.txt.gz
PGS000191
(wbc)
PGP000078 |
Vuckovic D et al. Cell (2020)
White blood cell count leukocyte quantity 636
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000191/ScoringFiles/PGS000191.txt.gz
PGS000305
(GRS31_FG)
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Fasting glucose blood glucose amount 31
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000305/ScoringFiles/PGS000305.txt.gz
PGS000307
(GRS12_FI)
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Fasting insulin blood insulin amount 12
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000307/ScoringFiles/PGS000307.txt.gz
PGS000315
(GRS7_lgE)
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Immunoglobulin E (IgE) serum IgE amount 7
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000315/ScoringFiles/PGS000315.txt.gz
PGS000669
(snpnet.Albumin)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Albumin [g/L] serum albumin amount 11,912
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000669/ScoringFiles/PGS000669.txt.gz - Check Terms/Licenses
PGS000678
(snpnet.Creatinine)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Creatinine [umol/L] serum creatinine amount 21,027
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000678/ScoringFiles/PGS000678.txt.gz - Check Terms/Licenses
PGS000691
(snpnet.Non_albumin_protein)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Non-albumin protein [g/L] level of serum globulin type protein 18,670
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000691/ScoringFiles/PGS000691.txt.gz - Check Terms/Licenses
PGS000693
(snpnet.Potassium_in_urine)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Potassium in urine [mmol/L] urine potassium amount 2,423
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000693/ScoringFiles/PGS000693.txt.gz - Check Terms/Licenses
PGS000701
(snpnet.Urea)
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Urea [mmol/L] serum urea amount 12,351
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000701/ScoringFiles/PGS000701.txt.gz - Check Terms/Licenses
PGS000836
(F-INS)
PGP000211 |
Aly DM et al. Nat Genet (2021)
Fasting insulin blood insulin amount 223
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000836/ScoringFiles/PGS000836.txt.gz
PGS000838
(Fasting_Glucose)
PGP000211 |
Aly DM et al. Nat Genet (2021)
Fasting glucose blood glucose amount 224
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000838/ScoringFiles/PGS000838.txt.gz
PGS000844
(VAT_Mass)
PGP000211 |
Aly DM et al. Nat Genet (2021)
Predicted visceral adipose tissue visceral adipose tissue quantity 518
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS000844/ScoringFiles/PGS000844.txt.gz
PGS001239
(GBE_INI30000)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
White blood cell count leukocyte quantity 13,785
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001239/ScoringFiles/PGS001239.txt.gz
PGS001350
(MAGICTA_EUR_PGS_FG)
PGP000246 |
Chen J et al. Nat Genet (2021)
Fasting glucose blood glucose amount 1,023,373
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001350/ScoringFiles/PGS001350.txt.gz
PGS001351
(MAGICTA_EUR_PGS_FI)
PGP000246 |
Chen J et al. Nat Genet (2021)
Fasting insulin blood insulin amount 1,025,098
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001351/ScoringFiles/PGS001351.txt.gz
PGS001408
(GBE_INI30280)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Immature reticulocyte fraction reticulocyte amount 10,871
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001408/ScoringFiles/PGS001408.txt.gz
PGS001772
(GBE_INI23005)
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
ZEBRA antigen for Epstein-Barr Virus blood immunoglobulin amount 158
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001772/ScoringFiles/PGS001772.txt.gz
PGS001886
(portability-PLR_albumin)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Albumin serum albumin amount 60,423
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001886/ScoringFiles/PGS001886.txt.gz
PGS001930
(portability-PLR_immature_reticulocyte_frac)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Immature reticulocyte fraction reticulocyte amount 39,162
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001930/ScoringFiles/PGS001930.txt.gz
PGS001945
(portability-PLR_log_creatinine)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Creatinine serum creatinine amount 76,800
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001945/ScoringFiles/PGS001945.txt.gz
PGS001962
(portability-PLR_log_leukocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
White blood cell (leukocyte) count leukocyte quantity 80,228
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001962/ScoringFiles/PGS001962.txt.gz
PGS001974
(portability-PLR_log_potassium_urine)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Potassium in urine urine potassium amount 21,512
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS001974/ScoringFiles/PGS001974.txt.gz
PGS002099
(portability-ldpred2_albumin)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Albumin serum albumin amount 816,264
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002099/ScoringFiles/PGS002099.txt.gz
PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Immature reticulocyte fraction reticulocyte amount 664,696
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002147/ScoringFiles/PGS002147.txt.gz
PGS002163
(portability-ldpred2_log_creatinine)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Creatinine serum creatinine amount 835,964
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002163/ScoringFiles/PGS002163.txt.gz
PGS002180
(portability-ldpred2_log_leukocyte)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
White blood cell (leukocyte) count leukocyte quantity 846,337
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002180/ScoringFiles/PGS002180.txt.gz
PGS002192
(portability-ldpred2_log_potassium_urine)
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Potassium in urine urine potassium amount 881,567
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002192/ScoringFiles/PGS002192.txt.gz
PGS002295
(GRS413_IGF-1)
PGP000325 |
Tsai CW et al. American Journal of Cancer Research (2022)
Insulin growth-like factor-1 level insulin-like protein amount 413
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002295/ScoringFiles/PGS002295.txt.gz
PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 1,109,311
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002357/ScoringFiles/PGS002357.txt.gz
PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 920,936
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002380/ScoringFiles/PGS002380.txt.gz
PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 13,898
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002429/ScoringFiles/PGS002429.txt.gz
PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 35,005
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002478/ScoringFiles/PGS002478.txt.gz
PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 141,866
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002527/ScoringFiles/PGS002527.txt.gz
PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 4,921
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002576/ScoringFiles/PGS002576.txt.gz
PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 3,184
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002625/ScoringFiles/PGS002625.txt.gz
PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 491,764
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002674/ScoringFiles/PGS002674.txt.gz
PGS002723
(blood_WHITE_COUNT.SBayesR)
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
White blood cell count leukocyte quantity 983,751
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002723/ScoringFiles/PGS002723.txt.gz
PGS002811
(ASATadjbmi3_weights_select)
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Abdominal adipose tissue volumes adjusted for BMI and height adipose amount 1,125,301
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002811/ScoringFiles/PGS002811.txt.gz
PGS002812
(GFATadjbmi3_weights_select)
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Gluteofemoral adipose tissue volumes adjusted for BMI and height adipose amount 1,125,301
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002812/ScoringFiles/PGS002812.txt.gz
PGS002813
(VATadjbmi3_weights_select)
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Visceral adipose tissue volumes adjusted for BMI and height visceral adipose tissue quantity 1,125,301
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002813/ScoringFiles/PGS002813.txt.gz
PGS002924
(ExPRSweb_FPG_FGovertime-corrected_LASSOSUM_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 281
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002924/ScoringFiles/PGS002924.txt.gz
PGS002925
(ExPRSweb_FPG_FGovertime-corrected_PT_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 13
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002925/ScoringFiles/PGS002925.txt.gz
PGS002926
(ExPRSweb_FPG_FGovertime-corrected_PLINK_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 13
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002926/ScoringFiles/PGS002926.txt.gz
PGS002927
(ExPRSweb_FPG_FGovertime-corrected_DBSLMM_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 5,106
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002927/ScoringFiles/PGS002927.txt.gz
PGS002928
(ExPRSweb_FPG_FGovertime-corrected_PRSCS_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 392
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002928/ScoringFiles/PGS002928.txt.gz
PGS002929
(ExPRSweb_FPG_MAGIC-FastingGlucose_LASSOSUM_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 71,791
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002929/ScoringFiles/PGS002929.txt.gz
PGS002930
(ExPRSweb_FPG_MAGIC-FastingGlucose_PT_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 264
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002930/ScoringFiles/PGS002930.txt.gz
PGS002931
(ExPRSweb_FPG_MAGIC-FastingGlucose_PLINK_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 273
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002931/ScoringFiles/PGS002931.txt.gz
PGS002932
(ExPRSweb_FPG_MAGIC-FastingGlucose_DBSLMM_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 1,202,298
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002932/ScoringFiles/PGS002932.txt.gz
PGS002933
(ExPRSweb_FPG_MAGIC-FastingGlucose_PRSCS_MGI_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Fasting plasma glucose blood glucose amount 1,007,415
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002933/ScoringFiles/PGS002933.txt.gz
PGS002944
(ExPRSweb_Glucose_FGovertime-corrected_LASSOSUM_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 519
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002944/ScoringFiles/PGS002944.txt.gz
PGS002945
(ExPRSweb_Glucose_FGovertime-corrected_PT_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 1,479
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002945/ScoringFiles/PGS002945.txt.gz
PGS002946
(ExPRSweb_Glucose_FGovertime-corrected_PLINK_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 1,553
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002946/ScoringFiles/PGS002946.txt.gz
PGS002947
(ExPRSweb_Glucose_FGovertime-corrected_DBSLMM_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 1,501
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002947/ScoringFiles/PGS002947.txt.gz
PGS002948
(ExPRSweb_Glucose_FGovertime-corrected_PRSCS_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 392
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002948/ScoringFiles/PGS002948.txt.gz
PGS002949
(ExPRSweb_Glucose_MAGIC-FastingGlucose_LASSOSUM_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 72,352
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002949/ScoringFiles/PGS002949.txt.gz
PGS002950
(ExPRSweb_Glucose_MAGIC-FastingGlucose_PT_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 38
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002950/ScoringFiles/PGS002950.txt.gz
PGS002951
(ExPRSweb_Glucose_MAGIC-FastingGlucose_PLINK_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 38
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002951/ScoringFiles/PGS002951.txt.gz
PGS002952
(ExPRSweb_Glucose_MAGIC-FastingGlucose_DBSLMM_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 1,501
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002952/ScoringFiles/PGS002952.txt.gz
PGS002953
(ExPRSweb_Glucose_MAGIC-FastingGlucose_PRSCS_UKB_20211120)
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Glucose blood glucose amount 1,008,035
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS002953/ScoringFiles/PGS002953.txt.gz
PGS003336
(CVGRS_FPG)
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Fasting plasma glucose blood glucose amount 56
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003336/ScoringFiles/PGS003336.txt.gz
PGS003345
(ALLGRS_FPG)
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Fasting plasma glucose blood glucose amount 60
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003345/ScoringFiles/PGS003345.txt.gz
PGS003378
(PSA_PGS_128)
PGP000412 |
Kachuri L et al. Nat Med (2023)
Prostate-specific antigen (PSA) levels prostate specific antigen amount 128
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003378/ScoringFiles/PGS003378.txt.gz
PGS003379
(PSA_PGS_CSx)
PGP000412 |
Kachuri L et al. Nat Med (2023)
Prostate-specific antigen (PSA) levels prostate specific antigen amount 1,071,278
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003379/ScoringFiles/PGS003379.txt.gz
PGS003466
(LDPred2_FI)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Fasting insulin blood insulin amount 850,362
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003466/ScoringFiles/PGS003466.txt.gz
PGS003483
(LDPred2_WBC)
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
White blood cell count leukocyte quantity 860,306
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003483/ScoringFiles/PGS003483.txt.gz
PGS003526
(cont-decay-log_creatinine)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Creatinine serum creatinine amount 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003526/ScoringFiles/PGS003526.txt.gz
PGS003541
(cont-decay-log_leukocyte)
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
White blood cell (leukocyte) count leukocyte quantity 979,739
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003541/ScoringFiles/PGS003541.txt.gz
PGS003924
(INI30000)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
White blood cell (leukocyte) count leukocyte quantity 17,890
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003924/ScoringFiles/PGS003924.txt.gz
PGS003950
(INI30280)
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Immature reticulocyte fraction reticulocyte amount 16,307
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS003950/ScoringFiles/PGS003950.txt.gz
PGS004328
(X30600.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Albumin serum albumin amount 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004328/ScoringFiles/PGS004328.txt.gz
PGS004334
(X30700.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
Creatinine (umol/L) serum creatinine amount 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004334/ScoringFiles/PGS004334.txt.gz
PGS004345
(X30000.score)
PGP000561 |
Jung H et al. Commun Biol (2024)
White blood cell (leukocyte) count leukocyte quantity 1,059,939
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004345/ScoringFiles/PGS004345.txt.gz
PGS004707
(Albumin_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Albumin serum albumin amount 589,303
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004707/ScoringFiles/PGS004707.txt.gz
PGS004708
(Albumin_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Albumin serum albumin amount 2,071,924
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004708/ScoringFiles/PGS004708.txt.gz
PGS004709
(Albumin_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Albumin serum albumin amount 2,659,200
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004709/ScoringFiles/PGS004709.txt.gz
PGS004710
(Albumin_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Albumin serum albumin amount 2,071,924
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004710/ScoringFiles/PGS004710.txt.gz
PGS004747
(creatinine_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Serum creatinine serum creatinine amount 609,027
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004747/ScoringFiles/PGS004747.txt.gz
PGS004748
(creatinine_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Serum creatinine serum creatinine amount 2,653,053
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004748/ScoringFiles/PGS004748.txt.gz
PGS004749
(creatinine_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
Serum creatinine serum creatinine amount 1,469,062
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004749/ScoringFiles/PGS004749.txt.gz
PGS004750
(creatinine_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
Serum creatinine serum creatinine amount 2,653,053
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004750/ScoringFiles/PGS004750.txt.gz
PGS004855
(WBC_PRSmix_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte quantity 1,165,158
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004855/ScoringFiles/PGS004855.txt.gz
PGS004856
(WBC_PRSmix_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte quantity 6,594,323
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004856/ScoringFiles/PGS004856.txt.gz
PGS004857
(WBC_PRSmixPlus_eur)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte quantity 4,141,649
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004857/ScoringFiles/PGS004857.txt.gz
PGS004858
(WBC_PRSmixPlus_sas)
PGP000604 |
Truong B et al. Cell Genom (2024)
White blood cell count leukocyte quantity 6,594,323
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004858/ScoringFiles/PGS004858.txt.gz
PGS004906
(PRS60_TSH)
PGP000639 |
Mulder TA et al. Eur J Endocrinol (2023)
Thyroid stimulating hormone concentration thyroid stimulating hormone amount 60
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS004906/ScoringFiles/PGS004906.txt.gz
PGS005098
(psa2024_prs_318)
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Prostate specific antigen prostate specific antigen amount 318
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS005098/ScoringFiles/PGS005098.txt.gz
PGS005099
(psa2024_prs_447)
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Prostate specific antigen prostate specific antigen amount 447
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS005099/ScoringFiles/PGS005099.txt.gz
PGS005100
(psa2024_prs_disc)
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Prostate specific antigen prostate specific antigen amount 1,070,227
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS005100/ScoringFiles/PGS005100.txt.gz
PGS005101
(psa2024_prs_joint)
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Prostate specific antigen prostate specific antigen amount 1,070,230
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS005101/ScoringFiles/PGS005101.txt.gz
PGS005107
(PGS-PSA111)
PGP000696 |
Shi M et al. EBioMedicine (2023)
Prostate-specific antigen (PSA) levels prostate specific antigen amount 111
-
https://ftp.ebi.ac.uk/pub/databases/spot/pgs/scores/PGS005107/ScoringFiles/PGS005107.txt.gz

Performance Metrics

Disclaimer: The performance metrics are displayed as reported by the source studies. It is important to note that metrics are not necessarily comparable with each other. For example, metrics depend on the sample characteristics (described by the PGS Catalog Sample Set [PSS] ID), phenotyping, and statistical modelling. Please refer to the source publication for additional guidance on performance.

PGS Performance
Metric ID (PPM)
Evaluated Score PGS Sample Set ID
(PSS)
Performance Source Trait PGS Effect Sizes
(per SD change)
Classification Metrics Other Metrics Covariates Included in the Model PGS Performance:
Other Relevant Information
PPM000258 PGS000113
(wbc)
PSS000178|
European Ancestry|
81,606 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: White blood cell count Pearson correlation coefficent (r): 0.39876 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment) UKB Testing Set - these samples were held out from Score Development (regression training) but overlap with the samples used for variant selection (GWAS)
PPM000259 PGS000113
(wbc)
PSS000152|
European Ancestry|
40,466 individuals
PGP000051 |
Xu Y et al. Cell Genom (2022)
Reported Trait: White blood cell count Pearson correlation coefficent (r): 0.38866 age, sex, 10 PCs of ancestry, lifestyle factors (diet, smoking, alcohol consumption), technical covariates (the time between venepuncture and full blood cell analysis, seasonal effects, centre of sample collection, time dependent drift of equipment, systematic differences in equipment)
PPM000560 PGS000191
(wbc)
PSS000290|
European Ancestry|
2,314 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: White blood cell count : 0.06336 sex, age, 10 genetic PCs
PPM000545 PGS000191
(wbc)
PSS000291|
European Ancestry|
39,260 individuals
PGP000078 |
Vuckovic D et al. Cell (2020)
Reported Trait: White blood cell count : 0.08672 sex, age, 10 genetic PCs
PPM001770 PGS000191
(wbc)
PSS000911|
Greater Middle Eastern Ancestry|
13,989 individuals
PGP000147 |
Thareja G et al. Nat Commun (2021)
|Ext.
Reported Trait: White blood cell count Pearson correlation coefficent (r): 0.19
PPM000775 PGS000305
(GRS31_FG)
PSS000376|
European Ancestry|
1,354 individuals
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Reported Trait: Fasting glucose (mmol/l) : 0.0367 Sex, age, age^2
PPM000777 PGS000307
(GRS12_FI)
PSS000376|
European Ancestry|
1,354 individuals
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Reported Trait: Fasting insulin (mU/I) : 0.0145 Sex, age
PPM000785 PGS000315
(GRS7_lgE)
PSS000376|
European Ancestry|
1,354 individuals
PGP000092 |
Xie T et al. Circ Genom Precis Med (2020)
Reported Trait: Immunoglobulin E (kU/I) : 0.0206 Sex, age
PPM001397 PGS000669
(snpnet.Albumin)
PSS000627|
African Ancestry|
5,573 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Albumin [g/L] : 0.10081
Spearman's ρ: 0.121
Age, sex, PCs(1-40)
PPM001432 PGS000669
(snpnet.Albumin)
PSS000628|
East Asian Ancestry|
984 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Albumin [g/L] : 0.08916
Spearman's ρ: 0.198
Age, sex, PCs(1-40)
PPM001467 PGS000669
(snpnet.Albumin)
PSS000629|
European Ancestry|
21,516 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Albumin [g/L] : 0.13257
Spearman's ρ: 0.25
Age, sex, PCs(1-40)
PPM001502 PGS000669
(snpnet.Albumin)
PSS000630|
South Asian Ancestry|
6,687 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Albumin [g/L] : 0.15158
Spearman's ρ: 0.216
Age, sex, PCs(1-40)
PPM001537 PGS000669
(snpnet.Albumin)
PSS000631|
European Ancestry|
58,196 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Albumin [g/L] : 0.13054
Spearman's ρ: 0.262
Age, sex, PCs(1-40)
PPM007271 PGS000669
(snpnet.Albumin)
PSS007067|
East Asian Ancestry|
1,472 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Albumin : 0.02049 [0.0072, 0.03378]
Incremental R2 (full-covars): 0.00193
PGS R2 (no covariates): 0.05108 [0.03075, 0.0714]
age, sex, UKB array type, Genotype PCs
PPM007274 PGS000669
(snpnet.Albumin)
PSS007070|
European Ancestry|
59,097 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Albumin : 0.03793 [0.0351, 0.04076]
Incremental R2 (full-covars): 0.00267
PGS R2 (no covariates): 0.06779 [0.06413, 0.07145]
age, sex, UKB array type, Genotype PCs
PPM007270 PGS000669
(snpnet.Albumin)
PSS007066|
African Ancestry|
5,658 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Albumin : 0.07255 [0.06041, 0.08469]
Incremental R2 (full-covars): 0.00087
PGS R2 (no covariates): 0.01339 [0.00784, 0.01894]
age, sex, UKB array type, Genotype PCs
PPM007272 PGS000669
(snpnet.Albumin)
PSS007068|
European Ancestry|
21,759 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Albumin : 0.04362 [0.03866, 0.04859]
Incremental R2 (full-covars): 0.00252
PGS R2 (no covariates): 0.0618 [0.05601, 0.06759]
age, sex, UKB array type, Genotype PCs
PPM007273 PGS000669
(snpnet.Albumin)
PSS007069|
South Asian Ancestry|
6,786 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Albumin : 0.0904 [0.07829, 0.10251]
Incremental R2 (full-covars): 0.00198
PGS R2 (no covariates): 0.04739 [0.03821, 0.05657]
age, sex, UKB array type, Genotype PCs
PPM001406 PGS000678
(snpnet.Creatinine)
PSS000667|
African Ancestry|
6,016 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Creatinine [umol/L] : 0.37051
Spearman's ρ: 0.146
Age, sex, PCs(1-40)
PPM001441 PGS000678
(snpnet.Creatinine)
PSS000668|
East Asian Ancestry|
1,081 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Creatinine [umol/L] : 0.44314
Spearman's ρ: 0.229
Age, sex, PCs(1-40)
PPM001476 PGS000678
(snpnet.Creatinine)
PSS000674|
European Ancestry|
23,576 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Creatinine [umol/L] : 0.3939
Spearman's ρ: 0.325
Age, sex, PCs(1-40)
PPM001511 PGS000678
(snpnet.Creatinine)
PSS000675|
South Asian Ancestry|
7,339 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Creatinine [umol/L] : 0.40587
Spearman's ρ: 0.283
Age, sex, PCs(1-40)
PPM001546 PGS000678
(snpnet.Creatinine)
PSS000676|
European Ancestry|
63,758 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Creatinine [umol/L] : 0.41565
Spearman's ρ: 0.337
Age, sex, PCs(1-40)
PPM001579 PGS000678
(snpnet.Creatinine)
PSS000800|
European Ancestry|
2,129 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Creatinine [umol/L] Spearman's ρ: 0.24 Age, sex
PPM007315 PGS000678
(snpnet.Creatinine)
PSS007131|
African Ancestry|
6,097 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Creatinine : 0.1805 [0.16358, 0.19743]
Incremental R2 (full-covars): 0.00023
PGS R2 (no covariates): 0.0048 [0.00145, 0.00815]
age, sex, UKB array type, Genotype PCs
PPM007316 PGS000678
(snpnet.Creatinine)
PSS007132|
East Asian Ancestry|
1,615 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Creatinine : 0.30903 [0.27263, 0.34543]
Incremental R2 (full-covars): 0.0006
PGS R2 (no covariates): 0.01099 [0.00116, 0.02081]
age, sex, UKB array type, Genotype PCs
PPM007317 PGS000678
(snpnet.Creatinine)
PSS007133|
European Ancestry|
23,762 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Creatinine : 0.23065 [0.22147, 0.23982]
Incremental R2 (full-covars): 0.00126
PGS R2 (no covariates): 0.04345 [0.0385, 0.0484]
age, sex, UKB array type, Genotype PCs
PPM007318 PGS000678
(snpnet.Creatinine)
PSS007134|
South Asian Ancestry|
7,427 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Creatinine : 0.2107 [0.19466, 0.22675]
Incremental R2 (full-covars): 0.00063
PGS R2 (no covariates): 0.02244 [0.01595, 0.02892]
age, sex, UKB array type, Genotype PCs
PPM007319 PGS000678
(snpnet.Creatinine)
PSS007135|
European Ancestry|
64,433 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Creatinine : 0.23859 [0.23298, 0.24421]
Incremental R2 (full-covars): 0.00127
PGS R2 (no covariates): 0.04554 [0.04246, 0.04861]
age, sex, UKB array type, Genotype PCs
PPM001419 PGS000691
(snpnet.Non_albumin_protein)
PSS000729|
African Ancestry|
5,573 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Non-albumin protein [g/L] : 0.07146
Spearman's ρ: 0.16
Age, sex, PCs(1-40)
PPM001454 PGS000691
(snpnet.Non_albumin_protein)
PSS000730|
East Asian Ancestry|
984 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Non-albumin protein [g/L] : 0.0886
Spearman's ρ: 0.216
Age, sex, PCs(1-40)
PPM001489 PGS000691
(snpnet.Non_albumin_protein)
PSS000731|
European Ancestry|
21,516 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Non-albumin protein [g/L] : 0.12839
Spearman's ρ: 0.31
Age, sex, PCs(1-40)
PPM001524 PGS000691
(snpnet.Non_albumin_protein)
PSS000732|
South Asian Ancestry|
6,687 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Non-albumin protein [g/L] : 0.15158
Spearman's ρ: 0.292
Age, sex, PCs(1-40)
PPM001559 PGS000691
(snpnet.Non_albumin_protein)
PSS000733|
European Ancestry|
58,196 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Non-albumin protein [g/L] : 0.12321
Spearman's ρ: 0.311
Age, sex, PCs(1-40)
PPM007380 PGS000691
(snpnet.Non_albumin_protein)
PSS006916|
African Ancestry|
5,573 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Non-albumin protein : 0.02946 [0.02136, 0.03756]
Incremental R2 (full-covars): 0.02412
PGS R2 (no covariates): 0.02397 [0.01663, 0.03132]
age, sex, UKB array type, Genotype PCs
PPM007381 PGS000691
(snpnet.Non_albumin_protein)
PSS006917|
East Asian Ancestry|
1,436 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Non-albumin protein : 0.09152 [0.06547, 0.11756]
Incremental R2 (full-covars): 0.05716
PGS R2 (no covariates): 0.06672 [0.04387, 0.08956]
age, sex, UKB array type, Genotype PCs
PPM007382 PGS000691
(snpnet.Non_albumin_protein)
PSS006918|
European Ancestry|
21,514 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Non-albumin protein : 0.09985 [0.09278, 0.10691]
Incremental R2 (full-covars): 0.09891
PGS R2 (no covariates): 0.09939 [0.09234, 0.10644]
age, sex, UKB array type, Genotype PCs
PPM007383 PGS000691
(snpnet.Non_albumin_protein)
PSS006919|
South Asian Ancestry|
6,643 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Non-albumin protein : 0.09351 [0.08124, 0.10578]
Incremental R2 (full-covars): 0.08375
PGS R2 (no covariates): 0.08889 [0.07686, 0.10091]
age, sex, UKB array type, Genotype PCs
PPM007384 PGS000691
(snpnet.Non_albumin_protein)
PSS006920|
European Ancestry|
58,191 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Non-albumin protein : 0.10006 [0.09577, 0.10436]
Incremental R2 (full-covars): 0.10006
PGS R2 (no covariates): 0.10018 [0.09588, 0.10448]
age, sex, UKB array type, Genotype PCs
PPM001421 PGS000693
(snpnet.Potassium_in_urine)
PSS000739|
African Ancestry|
5,786 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Potassium in urine [mmol/L] : 0.03001
Spearman's ρ: 0.011
Age, sex, PCs(1-40)
PPM001456 PGS000693
(snpnet.Potassium_in_urine)
PSS000740|
East Asian Ancestry|
1,045 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Potassium in urine [mmol/L] : 0.01859
Spearman's ρ: 0.038
Age, sex, PCs(1-40)
PPM001491 PGS000693
(snpnet.Potassium_in_urine)
PSS000741|
European Ancestry|
22,839 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Potassium in urine [mmol/L] : 0.04847
Spearman's ρ: 0.036
Age, sex, PCs(1-40)
PPM001589 PGS000693
(snpnet.Potassium_in_urine)
PSS000835|
European Ancestry|
2,117 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Potassium in urine [mmol/L] Spearman's ρ: 0.065 Age, sex
PPM001526 PGS000693
(snpnet.Potassium_in_urine)
PSS000742|
South Asian Ancestry|
6,998 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Potassium in urine [mmol/L] : 0.06035
Spearman's ρ: 0.027
Age, sex, PCs(1-40)
PPM001561 PGS000693
(snpnet.Potassium_in_urine)
PSS000743|
European Ancestry|
62,013 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Potassium in urine [mmol/L] : 0.04727
Spearman's ρ: 0.042
Age, sex, PCs(1-40)
PPM007390 PGS000693
(snpnet.Potassium_in_urine)
PSS007056|
African Ancestry|
6,238 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Potassium in urine : 0.01656 [0.01041, 0.02271]
Incremental R2 (full-covars): 1e-05
PGS R2 (no covariates): 0.0 [-0.00009, 0.0001]
age, sex, UKB array type, Genotype PCs
PPM007391 PGS000693
(snpnet.Potassium_in_urine)
PSS007057|
East Asian Ancestry|
1,642 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Potassium in urine : 0.02067 [0.00733, 0.03401]
Incremental R2 (full-covars): 6e-05
PGS R2 (no covariates): 0.00061 [-0.00173, 0.00295]
age, sex, UKB array type, Genotype PCs
PPM007392 PGS000693
(snpnet.Potassium_in_urine)
PSS007058|
European Ancestry|
24,108 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Potassium in urine : 0.02543 [0.02157, 0.02928]
Incremental R2 (full-covars): 6e-05
PGS R2 (no covariates): 0.00097 [0.0002, 0.00175]
age, sex, UKB array type, Genotype PCs
PPM007393 PGS000693
(snpnet.Potassium_in_urine)
PSS007059|
South Asian Ancestry|
7,464 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Potassium in urine : 0.03366 [0.02581, 0.04151]
Incremental R2 (full-covars): 6e-05
PGS R2 (no covariates): 0.00101 [-0.00039, 0.00242]
age, sex, UKB array type, Genotype PCs
PPM007394 PGS000693
(snpnet.Potassium_in_urine)
PSS007060|
European Ancestry|
65,536 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Potassium in urine : 0.02071 [0.01858, 0.02283]
Incremental R2 (full-covars): 7e-05
PGS R2 (no covariates): 0.00149 [0.0009, 0.00207]
age, sex, UKB array type, Genotype PCs
PPM001429 PGS000701
(snpnet.Urea)
PSS000782|
African Ancestry|
6,015 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Urea [mmol/L] : 0.13035
Spearman's ρ: 0.111
Age, sex, PCs(1-40)
PPM001464 PGS000701
(snpnet.Urea)
PSS000783|
East Asian Ancestry|
1,080 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Urea [mmol/L] : 0.12883
Spearman's ρ: 0.147
Age, sex, PCs(1-40)
PPM001499 PGS000701
(snpnet.Urea)
PSS000784|
European Ancestry|
23,562 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Urea [mmol/L] : 0.15772
Spearman's ρ: 0.205
Age, sex, PCs(1-40)
PPM001534 PGS000701
(snpnet.Urea)
PSS000785|
South Asian Ancestry|
7,336 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Urea [mmol/L] : 0.15556
Spearman's ρ: 0.174
Age, sex, PCs(1-40)
PPM001569 PGS000701
(snpnet.Urea)
PSS000786|
European Ancestry|
63,745 individuals
PGP000128 |
Sinnott-Armstrong N et al. Nat Genet (2021)
Reported Trait: Urea [mmol/L] : 0.15214
Spearman's ρ: 0.223
Age, sex, PCs(1-40)
PPM007430 PGS000701
(snpnet.Urea)
PSS007116|
African Ancestry|
6,097 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Urea : 0.09637 [0.08274, 0.11001]
Incremental R2 (full-covars): 0.00328
PGS R2 (no covariates): 0.00567 [0.00203, 0.00931]
age, sex, UKB array type, Genotype PCs
PPM007431 PGS000701
(snpnet.Urea)
PSS007117|
East Asian Ancestry|
1,614 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Urea : 0.12047 [0.09154, 0.1494]
Incremental R2 (full-covars): 0.00765
PGS R2 (no covariates): 0.01582 [0.00409, 0.02754]
age, sex, UKB array type, Genotype PCs
PPM007432 PGS000701
(snpnet.Urea)
PSS007118|
European Ancestry|
23,752 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Urea : 0.10315 [0.096, 0.11031]
Incremental R2 (full-covars): 0.01247
PGS R2 (no covariates): 0.03634 [0.03178, 0.0409]
age, sex, UKB array type, Genotype PCs
PPM007433 PGS000701
(snpnet.Urea)
PSS007119|
South Asian Ancestry|
7,427 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Urea : 0.11244 [0.09926, 0.12562]
Incremental R2 (full-covars): 0.00839
PGS R2 (no covariates): 0.02026 [0.01408, 0.02643]
age, sex, UKB array type, Genotype PCs
PPM007434 PGS000701
(snpnet.Urea)
PSS007120|
European Ancestry|
64,425 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
|Ext.
Reported Trait: Urea : 0.08868 [0.08459, 0.09278]
Incremental R2 (full-covars): 0.0137
PGS R2 (no covariates): 0.04033 [0.03742, 0.04324]
age, sex, UKB array type, Genotype PCs
PPM002263 PGS000836
(F-INS)
PSS001086|
European Ancestry|
3,194 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Autoimmune Diabetes OR: 0.97 [0.88, 1.08] PC1-10
PPM002264 PGS000836
(F-INS)
PSS001087|
European Ancestry|
3,930 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Insulin-Deficient Diabetes OR: 0.98 [0.91, 1.05] PC1-10
PPM002266 PGS000836
(F-INS)
PSS001085|
European Ancestry|
4,116 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Moderate Obesity-related Diabetes OR: 1.04 [0.97, 1.11] PC1-10
PPM002267 PGS000836
(F-INS)
PSS001084|
European Ancestry|
5,597 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Moderate Age-Related Diabetes OR: 0.96 [0.91, 1.01] PC1-10
PPM002265 PGS000836
(F-INS)
PSS001088|
European Ancestry|
3,869 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Insulin-Resistant Diabetes OR: 1.22 [1.14, 1.31] PC1-10
PPM002273 PGS000838
(Fasting_Glucose)
PSS001086|
European Ancestry|
3,194 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Autoimmune Diabetes OR: 1.09 [0.98, 1.2] PC1-10
PPM002275 PGS000838
(Fasting_Glucose)
PSS001088|
European Ancestry|
3,869 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Insulin-Resistant Diabetes OR: 1.05 [0.98, 1.13] PC1-10
PPM002276 PGS000838
(Fasting_Glucose)
PSS001085|
European Ancestry|
4,116 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Moderate Obesity-related Diabetes OR: 1.38 [1.29, 1.48] PC1-10
PPM002277 PGS000838
(Fasting_Glucose)
PSS001084|
European Ancestry|
5,597 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Moderate Age-Related Diabetes OR: 1.33 [1.26, 1.41] PC1-10
PPM002274 PGS000838
(Fasting_Glucose)
PSS001087|
European Ancestry|
3,930 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Insulin-Deficient Diabetes OR: 1.33 [1.24, 1.42] PC1-10
PPM002303 PGS000844
(VAT_Mass)
PSS001086|
European Ancestry|
3,194 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Autoimmune Diabetes OR: 1.17 [1.06, 1.29] PC1-10
PPM002305 PGS000844
(VAT_Mass)
PSS001088|
European Ancestry|
3,869 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Insulin-Resistant Diabetes OR: 1.26 [1.18, 1.36] PC1-10
PPM002306 PGS000844
(VAT_Mass)
PSS001085|
European Ancestry|
4,116 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Moderate Obesity-related Diabetes OR: 1.49 [1.39, 1.6] PC1-10
PPM002307 PGS000844
(VAT_Mass)
PSS001084|
European Ancestry|
5,597 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Moderate Age-Related Diabetes OR: 1.1 [1.04, 1.16] PC1-10
PPM002304 PGS000844
(VAT_Mass)
PSS001087|
European Ancestry|
3,930 individuals
PGP000211 |
Aly DM et al. Nat Genet (2021)
Reported Trait: Severe Insulin-Deficient Diabetes OR: 1.27 [1.18, 1.36] PC1-10
PPM020182 PGS000844
(VAT_Mass)
PSS011301|
South Asian Ancestry|
1,282 individuals
PGP000525 |
Yajnik CS et al. Lancet Reg Health Southeast Asia (2023)
|Ext.
Reported Trait: BMI β: 0.14774 (0.027271)
PPM008704 PGS001239
(GBE_INI30000)
PSS006891|
African Ancestry|
6,139 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.05282 [0.04224, 0.0634]
Incremental R2 (full-covars): 0.00963
PGS R2 (no covariates): 0.01451 [0.00874, 0.02028]
age, sex, UKB array type, Genotype PCs
PPM008705 PGS001239
(GBE_INI30000)
PSS006892|
East Asian Ancestry|
1,655 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.07596 [0.05182, 0.10009]
Incremental R2 (full-covars): 0.0496
PGS R2 (no covariates): 0.05069 [0.03044, 0.07095]
age, sex, UKB array type, Genotype PCs
PPM008706 PGS001239
(GBE_INI30000)
PSS006893|
European Ancestry|
24,174 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.08839 [0.08166, 0.09513]
Incremental R2 (full-covars): 0.07763
PGS R2 (no covariates): 0.08212 [0.07559, 0.08865]
age, sex, UKB array type, Genotype PCs
PPM008707 PGS001239
(GBE_INI30000)
PSS006894|
South Asian Ancestry|
7,520 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.07166 [0.06066, 0.08267]
Incremental R2 (full-covars): 0.06404
PGS R2 (no covariates): 0.06438 [0.05387, 0.07489]
age, sex, UKB array type, Genotype PCs
PPM008708 PGS001239
(GBE_INI30000)
PSS006895|
European Ancestry|
65,638 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: White blood cell count : 0.0777 [0.07382, 0.08158]
Incremental R2 (full-covars): 0.07177
PGS R2 (no covariates): 0.07264 [0.06887, 0.07641]
age, sex, UKB array type, Genotype PCs
PPM005137 PGS001350
(MAGICTA_EUR_PGS_FG)
PSS003587|
European Ancestry|
45,038 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Fasting glucose : 0.229
PPM005140 PGS001350
(MAGICTA_EUR_PGS_FG)
PSS003585|
African Ancestry|
16,579 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Fasting glucose : 0.032
PPM005143 PGS001350
(MAGICTA_EUR_PGS_FG)
PSS003586|
East Asian Ancestry|
31,669 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Fasting glucose : 0.027
PPM005138 PGS001351
(MAGICTA_EUR_PGS_FI)
PSS003590|
European Ancestry|
29,123 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Fasting insulin : 0.095
PPM005141 PGS001351
(MAGICTA_EUR_PGS_FI)
PSS003588|
African Ancestry|
8,101 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Fasting insulin : 0.028
PPM005144 PGS001351
(MAGICTA_EUR_PGS_FI)
PSS003589|
East Asian Ancestry|
26,691 individuals
PGP000246 |
Chen J et al. Nat Genet (2021)
Reported Trait: Fasting insulin : 0.014
PPM020887 PGS001351
(MAGICTA_EUR_PGS_FI)
PSS011442|
European Ancestry|
564 individuals
PGP000599 |
Guarischi-Sousa R et al. Circ Genom Precis Med (2023)
|Ext.
Reported Trait: Raised coronary lesion OR: 1.1 [0.91, 1.34]
PPM020892 PGS001351
(MAGICTA_EUR_PGS_FI)
PSS011441|
African Ancestry|
504 individuals
PGP000599 |
Guarischi-Sousa R et al. Circ Genom Precis Med (2023)
|Ext.
Reported Trait: Raised coronary lesion OR: 1.15 [0.92, 1.42]
PPM007065 PGS001408
(GBE_INI30280)
PSS007031|
African Ancestry|
5,973 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.03195 [0.02354, 0.04036]
Incremental R2 (full-covars): 0.01989
PGS R2 (no covariates): 0.01953 [0.01287, 0.02619]
age, sex, UKB array type, Genotype PCs
PPM007066 PGS001408
(GBE_INI30280)
PSS007032|
East Asian Ancestry|
1,623 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.04983 [0.02973, 0.06992]
Incremental R2 (full-covars): 0.02998
PGS R2 (no covariates): 0.03394 [0.01708, 0.05081]
age, sex, UKB array type, Genotype PCs
PPM007067 PGS001408
(GBE_INI30280)
PSS007033|
European Ancestry|
23,680 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.10073 [0.09364, 0.10782]
Incremental R2 (full-covars): 0.08989
PGS R2 (no covariates): 0.09045 [0.08366, 0.09725]
age, sex, UKB array type, Genotype PCs
PPM007068 PGS001408
(GBE_INI30280)
PSS007034|
South Asian Ancestry|
7,321 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.07122 [0.06025, 0.0822]
Incremental R2 (full-covars): 0.05964
PGS R2 (no covariates): 0.06252 [0.05214, 0.0729]
age, sex, UKB array type, Genotype PCs
PPM007069 PGS001408
(GBE_INI30280)
PSS007035|
European Ancestry|
64,524 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: Immature reticulocyte fraction : 0.09976 [0.09547, 0.10405]
Incremental R2 (full-covars): 0.0902
PGS R2 (no covariates): 0.09063 [0.0865, 0.09477]
age, sex, UKB array type, Genotype PCs
PPM005340 PGS001772
(GBE_INI23005)
PSS005016|
African Ancestry|
119 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: ZEBRA antigen for Epstein-Barr Virus : 0.13241 [0.11706, 0.14775]
Incremental R2 (full-covars): 0.0307
PGS R2 (no covariates): 0.04734 [0.03727, 0.05742]
age, sex, UKB array type, Genotype PCs
PPM005341 PGS001772
(GBE_INI23005)
PSS005017|
East Asian Ancestry|
41 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: ZEBRA antigen for Epstein-Barr Virus : 0.42791 [0.39244, 0.46337]
Incremental R2 (full-covars): 0.00179
PGS R2 (no covariates): 0.02952 [0.01372, 0.04533]
age, sex, UKB array type, Genotype PCs
PPM005342 PGS001772
(GBE_INI23005)
PSS005018|
European Ancestry|
471 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: ZEBRA antigen for Epstein-Barr Virus : 0.07688 [0.07052, 0.08324]
Incremental R2 (full-covars): 0.02635
PGS R2 (no covariates): 0.02765 [0.02363, 0.03166]
age, sex, UKB array type, Genotype PCs
PPM005343 PGS001772
(GBE_INI23005)
PSS005019|
South Asian Ancestry|
164 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: ZEBRA antigen for Epstein-Barr Virus : 0.15445 [0.13974, 0.16917]
Incremental R2 (full-covars): -0.01516
PGS R2 (no covariates): 0.00397 [0.00119, 0.00675]
age, sex, UKB array type, Genotype PCs
PPM005344 PGS001772
(GBE_INI23005)
PSS005020|
European Ancestry|
1,275 individuals
PGP000244 |
Tanigawa Y et al. PLoS Genet (2022)
Reported Trait: ZEBRA antigen for Epstein-Barr Virus : 0.05788 [0.05445, 0.0613]
Incremental R2 (full-covars): 0.03995
PGS R2 (no covariates): 0.03909 [0.03622, 0.04196]
age, sex, UKB array type, Genotype PCs
PPM009972 PGS001886
(portability-PLR_albumin)
PSS009382|
European Ancestry|
17,457 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2949 [0.2813, 0.3084] sex, age, birth date, deprivation index, 16 PCs
PPM009973 PGS001886
(portability-PLR_albumin)
PSS009156|
European Ancestry|
3,593 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2758 [0.2452, 0.3058] sex, age, birth date, deprivation index, 16 PCs
PPM009974 PGS001886
(portability-PLR_albumin)
PSS008710|
European Ancestry|
5,803 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2722 [0.2482, 0.2959] sex, age, birth date, deprivation index, 16 PCs
PPM009975 PGS001886
(portability-PLR_albumin)
PSS008484|
Greater Middle Eastern Ancestry|
1,036 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2704 [0.2124, 0.3264] sex, age, birth date, deprivation index, 16 PCs
PPM009976 PGS001886
(portability-PLR_albumin)
PSS008262|
South Asian Ancestry|
5,478 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2714 [0.2467, 0.2958] sex, age, birth date, deprivation index, 16 PCs
PPM009977 PGS001886
(portability-PLR_albumin)
PSS008040|
East Asian Ancestry|
1,560 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.226 [0.178, 0.2729] sex, age, birth date, deprivation index, 16 PCs
PPM009978 PGS001886
(portability-PLR_albumin)
PSS007826|
African Ancestry|
2,159 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.1475 [0.1058, 0.1887] sex, age, birth date, deprivation index, 16 PCs
PPM009979 PGS001886
(portability-PLR_albumin)
PSS008930|
African Ancestry|
3,401 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.1407 [0.1075, 0.1736] sex, age, birth date, deprivation index, 16 PCs
PPM010315 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS009417|
European Ancestry|
19,121 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3146 [0.3017, 0.3273] sex, age, birth date, deprivation index, 16 PCs
PPM010316 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS009191|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3213 [0.2928, 0.3491] sex, age, birth date, deprivation index, 16 PCs
PPM010317 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008745|
European Ancestry|
6,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3224 [0.3, 0.3444] sex, age, birth date, deprivation index, 16 PCs
PPM010318 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008519|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2696 [0.214, 0.3234] sex, age, birth date, deprivation index, 16 PCs
PPM010319 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008297|
South Asian Ancestry|
5,937 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2631 [0.2392, 0.2867] sex, age, birth date, deprivation index, 16 PCs
PPM010320 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008074|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2154 [0.1696, 0.2602] sex, age, birth date, deprivation index, 16 PCs
PPM010321 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS007861|
African Ancestry|
2,294 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.1811 [0.141, 0.2205] sex, age, birth date, deprivation index, 16 PCs
PPM010322 PGS001930
(portability-PLR_immature_reticulocyte_frac)
PSS008965|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.1665 [0.1345, 0.1982] sex, age, birth date, deprivation index, 16 PCs
PPM010441 PGS001945
(portability-PLR_log_creatinine)
PSS007883|
African Ancestry|
2,345 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.1379 [0.0978, 0.1776] sex, age, birth date, deprivation index, 16 PCs
PPM010437 PGS001945
(portability-PLR_log_creatinine)
PSS008767|
European Ancestry|
6,322 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3344 [0.3123, 0.3562] sex, age, birth date, deprivation index, 16 PCs
PPM010435 PGS001945
(portability-PLR_log_creatinine)
PSS009439|
European Ancestry|
18,993 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3568 [0.3443, 0.3691] sex, age, birth date, deprivation index, 16 PCs
PPM010436 PGS001945
(portability-PLR_log_creatinine)
PSS009213|
European Ancestry|
3,950 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3499 [0.3221, 0.377] sex, age, birth date, deprivation index, 16 PCs
PPM010438 PGS001945
(portability-PLR_log_creatinine)
PSS008541|
Greater Middle Eastern Ancestry|
1,124 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3425 [0.2894, 0.3936] sex, age, birth date, deprivation index, 16 PCs
PPM010439 PGS001945
(portability-PLR_log_creatinine)
PSS008319|
South Asian Ancestry|
6,003 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.2881 [0.2647, 0.3112] sex, age, birth date, deprivation index, 16 PCs
PPM010440 PGS001945
(portability-PLR_log_creatinine)
PSS008096|
East Asian Ancestry|
1,716 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.2465 [0.2013, 0.2907] sex, age, birth date, deprivation index, 16 PCs
PPM010442 PGS001945
(portability-PLR_log_creatinine)
PSS008987|
African Ancestry|
3,655 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.1382 [0.1062, 0.17] sex, age, birth date, deprivation index, 16 PCs
PPM010571 PGS001962
(portability-PLR_log_leukocyte)
PSS009451|
European Ancestry|
19,419 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3641 [0.3518, 0.3762] sex, age, birth date, deprivation index, 16 PCs
PPM010572 PGS001962
(portability-PLR_log_leukocyte)
PSS009225|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3304 [0.3024, 0.3578] sex, age, birth date, deprivation index, 16 PCs
PPM010574 PGS001962
(portability-PLR_log_leukocyte)
PSS008553|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2724 [0.2177, 0.3255] sex, age, birth date, deprivation index, 16 PCs
PPM010575 PGS001962
(portability-PLR_log_leukocyte)
PSS008331|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3155 [0.2926, 0.338] sex, age, birth date, deprivation index, 16 PCs
PPM010576 PGS001962
(portability-PLR_log_leukocyte)
PSS008108|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2467 [0.2021, 0.2903] sex, age, birth date, deprivation index, 16 PCs
PPM010577 PGS001962
(portability-PLR_log_leukocyte)
PSS007895|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1956 [0.1562, 0.2344] sex, age, birth date, deprivation index, 16 PCs
PPM010578 PGS001962
(portability-PLR_log_leukocyte)
PSS008999|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1532 [0.1215, 0.1845] sex, age, birth date, deprivation index, 16 PCs
PPM010573 PGS001962
(portability-PLR_log_leukocyte)
PSS008779|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3374 [0.3155, 0.3589] sex, age, birth date, deprivation index, 16 PCs
PPM010667 PGS001974
(portability-PLR_log_potassium_urine)
PSS009463|
European Ancestry|
19,363 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0706 [0.0565, 0.0846] sex, age, birth date, deprivation index, 16 PCs
PPM010668 PGS001974
(portability-PLR_log_potassium_urine)
PSS009237|
European Ancestry|
3,970 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0851 [0.0541, 0.116] sex, age, birth date, deprivation index, 16 PCs
PPM010669 PGS001974
(portability-PLR_log_potassium_urine)
PSS008791|
European Ancestry|
6,432 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0709 [0.0465, 0.0952] sex, age, birth date, deprivation index, 16 PCs
PPM010671 PGS001974
(portability-PLR_log_potassium_urine)
PSS008343|
South Asian Ancestry|
6,020 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0626 [0.0373, 0.0877] sex, age, birth date, deprivation index, 16 PCs
PPM010672 PGS001974
(portability-PLR_log_potassium_urine)
PSS008120|
East Asian Ancestry|
1,743 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0368 [-0.0104, 0.0839] sex, age, birth date, deprivation index, 16 PCs
PPM010673 PGS001974
(portability-PLR_log_potassium_urine)
PSS007907|
African Ancestry|
2,382 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0381 [-0.0022, 0.0783] sex, age, birth date, deprivation index, 16 PCs
PPM010674 PGS001974
(portability-PLR_log_potassium_urine)
PSS009011|
African Ancestry|
3,772 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0225 [-0.0095, 0.0545] sex, age, birth date, deprivation index, 16 PCs
PPM010670 PGS001974
(portability-PLR_log_potassium_urine)
PSS008565|
Greater Middle Eastern Ancestry|
1,146 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0884 [0.0302, 0.1461] sex, age, birth date, deprivation index, 16 PCs
PPM011648 PGS002099
(portability-ldpred2_albumin)
PSS009382|
European Ancestry|
17,457 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.289 [0.2754, 0.3026] sex, age, birth date, deprivation index, 16 PCs
PPM011649 PGS002099
(portability-ldpred2_albumin)
PSS009156|
European Ancestry|
3,593 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2771 [0.2465, 0.3071] sex, age, birth date, deprivation index, 16 PCs
PPM011650 PGS002099
(portability-ldpred2_albumin)
PSS008710|
European Ancestry|
5,803 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2717 [0.2476, 0.2954] sex, age, birth date, deprivation index, 16 PCs
PPM011651 PGS002099
(portability-ldpred2_albumin)
PSS008484|
Greater Middle Eastern Ancestry|
1,036 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2567 [0.1983, 0.3132] sex, age, birth date, deprivation index, 16 PCs
PPM011652 PGS002099
(portability-ldpred2_albumin)
PSS008262|
South Asian Ancestry|
5,478 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.265 [0.2402, 0.2895] sex, age, birth date, deprivation index, 16 PCs
PPM011653 PGS002099
(portability-ldpred2_albumin)
PSS008040|
East Asian Ancestry|
1,560 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.2305 [0.1827, 0.2773] sex, age, birth date, deprivation index, 16 PCs
PPM011654 PGS002099
(portability-ldpred2_albumin)
PSS007826|
African Ancestry|
2,159 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.1481 [0.1063, 0.1893] sex, age, birth date, deprivation index, 16 PCs
PPM011655 PGS002099
(portability-ldpred2_albumin)
PSS008930|
African Ancestry|
3,401 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Albumin Partial Correlation (partial-r): 0.1569 [0.1238, 0.1896] sex, age, birth date, deprivation index, 16 PCs
PPM012023 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS009417|
European Ancestry|
19,121 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3135 [0.3007, 0.3263] sex, age, birth date, deprivation index, 16 PCs
PPM012024 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS009191|
European Ancestry|
3,924 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3215 [0.2931, 0.3494] sex, age, birth date, deprivation index, 16 PCs
PPM012025 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008745|
European Ancestry|
6,298 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.3195 [0.2971, 0.3416] sex, age, birth date, deprivation index, 16 PCs
PPM012026 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008519|
Greater Middle Eastern Ancestry|
1,127 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2889 [0.234, 0.342] sex, age, birth date, deprivation index, 16 PCs
PPM012027 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008297|
South Asian Ancestry|
5,937 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2624 [0.2385, 0.286] sex, age, birth date, deprivation index, 16 PCs
PPM012028 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008074|
East Asian Ancestry|
1,722 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.2089 [0.163, 0.2539] sex, age, birth date, deprivation index, 16 PCs
PPM012029 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS007861|
African Ancestry|
2,294 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.1842 [0.1442, 0.2236] sex, age, birth date, deprivation index, 16 PCs
PPM012030 PGS002147
(portability-ldpred2_immature_reticulocyte_frac)
PSS008965|
African Ancestry|
3,602 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Immature reticulocyte fraction Partial Correlation (partial-r): 0.174 [0.1421, 0.2056] sex, age, birth date, deprivation index, 16 PCs
PPM012151 PGS002163
(portability-ldpred2_log_creatinine)
PSS009439|
European Ancestry|
18,993 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.353 [0.3405, 0.3654] sex, age, birth date, deprivation index, 16 PCs
PPM012152 PGS002163
(portability-ldpred2_log_creatinine)
PSS009213|
European Ancestry|
3,950 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3476 [0.3198, 0.3748] sex, age, birth date, deprivation index, 16 PCs
PPM012153 PGS002163
(portability-ldpred2_log_creatinine)
PSS008767|
European Ancestry|
6,322 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3305 [0.3083, 0.3523] sex, age, birth date, deprivation index, 16 PCs
PPM012154 PGS002163
(portability-ldpred2_log_creatinine)
PSS008541|
Greater Middle Eastern Ancestry|
1,124 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.3278 [0.2741, 0.3794] sex, age, birth date, deprivation index, 16 PCs
PPM012157 PGS002163
(portability-ldpred2_log_creatinine)
PSS007883|
African Ancestry|
2,345 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.1607 [0.1208, 0.2] sex, age, birth date, deprivation index, 16 PCs
PPM012158 PGS002163
(portability-ldpred2_log_creatinine)
PSS008987|
African Ancestry|
3,655 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.1261 [0.0939, 0.1579] sex, age, birth date, deprivation index, 16 PCs
PPM012155 PGS002163
(portability-ldpred2_log_creatinine)
PSS008319|
South Asian Ancestry|
6,003 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.2731 [0.2495, 0.2964] sex, age, birth date, deprivation index, 16 PCs
PPM012156 PGS002163
(portability-ldpred2_log_creatinine)
PSS008096|
East Asian Ancestry|
1,716 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Creatinine Partial Correlation (partial-r): 0.24 [0.1946, 0.2844] sex, age, birth date, deprivation index, 16 PCs
PPM012287 PGS002180
(portability-ldpred2_log_leukocyte)
PSS009451|
European Ancestry|
19,419 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3596 [0.3473, 0.3718] sex, age, birth date, deprivation index, 16 PCs
PPM012288 PGS002180
(portability-ldpred2_log_leukocyte)
PSS009225|
European Ancestry|
4,002 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3332 [0.3053, 0.3605] sex, age, birth date, deprivation index, 16 PCs
PPM012289 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008779|
European Ancestry|
6,437 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3368 [0.3149, 0.3583] sex, age, birth date, deprivation index, 16 PCs
PPM012290 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008553|
Greater Middle Eastern Ancestry|
1,153 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2706 [0.2158, 0.3237] sex, age, birth date, deprivation index, 16 PCs
PPM012291 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008331|
South Asian Ancestry|
6,078 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.3147 [0.2919, 0.3372] sex, age, birth date, deprivation index, 16 PCs
PPM012292 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008108|
East Asian Ancestry|
1,762 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.2454 [0.2007, 0.289] sex, age, birth date, deprivation index, 16 PCs
PPM012293 PGS002180
(portability-ldpred2_log_leukocyte)
PSS007895|
African Ancestry|
2,343 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1863 [0.1467, 0.2253] sex, age, birth date, deprivation index, 16 PCs
PPM012294 PGS002180
(portability-ldpred2_log_leukocyte)
PSS008999|
African Ancestry|
3,711 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: White blood cell (leukocyte) count Partial Correlation (partial-r): 0.1563 [0.1247, 0.1876] sex, age, birth date, deprivation index, 16 PCs
PPM012383 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS009463|
European Ancestry|
19,363 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0895 [0.0755, 0.1035] sex, age, birth date, deprivation index, 16 PCs
PPM012384 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS009237|
European Ancestry|
3,970 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0989 [0.068, 0.1297] sex, age, birth date, deprivation index, 16 PCs
PPM012385 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS008791|
European Ancestry|
6,432 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0851 [0.0607, 0.1093] sex, age, birth date, deprivation index, 16 PCs
PPM012387 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS008343|
South Asian Ancestry|
6,020 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0781 [0.0529, 0.1032] sex, age, birth date, deprivation index, 16 PCs
PPM012388 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS008120|
East Asian Ancestry|
1,743 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0486 [0.0014, 0.0956] sex, age, birth date, deprivation index, 16 PCs
PPM012389 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS007907|
African Ancestry|
2,382 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0379 [-0.0024, 0.0782] sex, age, birth date, deprivation index, 16 PCs
PPM012386 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS008565|
Greater Middle Eastern Ancestry|
1,146 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.1133 [0.0553, 0.1706] sex, age, birth date, deprivation index, 16 PCs
PPM012390 PGS002192
(portability-ldpred2_log_potassium_urine)
PSS009011|
African Ancestry|
3,772 individuals
PGP000263 |
Privé F et al. Am J Hum Genet (2022)
Reported Trait: Potassium in urine Partial Correlation (partial-r): 0.0304 [-0.0016, 0.0623] sex, age, birth date, deprivation index, 16 PCs
PPM013023 PGS002295
(GRS413_IGF-1)
PSS009653|
European Ancestry|
1,010 individuals
PGP000325 |
Tsai CW et al. American Journal of Cancer Research (2022)
Reported Trait: Recurrence in renal cell carcinoma HR: 0.63 [0.42, 0.93] Hazard Ratio (HR, above vs. below median): 0.63 [0.42, 0.93]
Odds Ratio (OR, above vs. below 75th percentile GRS): 0.73 [0.55, 0.96]
Age, gender, smoking status, BMI, histology, stage, grade, and treatment
PPM013024 PGS002295
(GRS413_IGF-1)
PSS009653|
European Ancestry|
1,010 individuals
PGP000325 |
Tsai CW et al. American Journal of Cancer Research (2022)
Reported Trait: Survival in renal cell carcinoma HR: 0.65 [0.44, 0.95] Hazard Ratio (HR, above vs. below median): 0.65 [0.44, 0.95]
Odds Ratio (OR, above vs. below 75th percentile GRS): 0.66 [0.5, 0.87]
Age, gender, smoking status, BMI, histology, stage, grade, and treatment
PPM013122 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0249 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013171 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0616 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013220 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.123 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013269 PGS002357
(blood_WHITE_COUNT.BOLT-LMM)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0945 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013315 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0507 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013338 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0029 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013361 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0025 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013292 PGS002380
(blood_WHITE_COUNT.BOLT-LMM-BBJ)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0018 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013410 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.004 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013459 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0423 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013508 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0662 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013557 PGS002429
(blood_WHITE_COUNT.P+T.0.0001)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0458 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013606 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013655 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.036 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013704 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.069 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013753 PGS002478
(blood_WHITE_COUNT.P+T.0.001)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0441 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013802 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0001 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013851 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0109 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013900 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0384 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013949 PGS002527
(blood_WHITE_COUNT.P+T.0.01)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0128 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM013998 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0151 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014047 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0323 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014096 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0515 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014145 PGS002576
(blood_WHITE_COUNT.P+T.1e-06)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0369 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014194 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0181 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014292 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0445 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014341 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.033 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014243 PGS002625
(blood_WHITE_COUNT.P+T.5e-08)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.027 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014390 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.047 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014439 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.0632 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014488 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1299 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014537 PGS002674
(blood_WHITE_COUNT.PolyFun-pred)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model when combined with BOLT-LMM vs. covariates alone): 0.1008 age, sex, age*sex, assessment center, genotyping array, 10 PCs See blood_WHITE_COUNT.mixweights file at http://data.broadinstitute.org/alkesgroup/polypred_results for combination weights
PPM014586 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009871|
African Ancestry|
6,149 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0218 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014635 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009872|
East Asian Ancestry|
893 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0624 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014684 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009873|
European Ancestry|
42,026 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.1169 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM014733 PGS002723
(blood_WHITE_COUNT.SBayesR)
PSS009874|
South Asian Ancestry|
7,769 individuals
PGP000332 |
Weissbrod O et al. Nat Genet (2022)
Reported Trait: White Blood Count Incremental R2 (full model vs. covariates alone): 0.0902 age, sex, age*sex, assessment center, genotyping array, 10 PCs
PPM015587 PGS002811
(ASATadjbmi3_weights_select)
PSS009993|
Multi-ancestry (including European)|
7,795 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Abdominal adipose tissue volumes adjusted for BMI and height β: 0.195 (0.016) Odds ratio (OR, top 5% vs reminder): 2.13 [1.46, 3.03] Age at time of imaging, sex, and the first 10 PCs of genetic ancestry
PPM015589 PGS002811
(ASATadjbmi3_weights_select)
PSS009992|
European Ancestry|
7,888 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: HDL cholesterol Beta (top 10 % vs reminder): 0.09 [0.02, 0.17] Age at enrollment, sex, and the first 10 principal components of genetic ancestry
PPM015588 PGS002812
(GFATadjbmi3_weights_select)
PSS009993|
Multi-ancestry (including European)|
7,795 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Gluteofemoral adipose tissue volumes adjusted for BMI and height β: 0.262 (0.016) Odds ratio (OR, top 5% vs reminder): 3.81 [2.76, 5.17] Age at time of imaging, sex, and the first 10 PCs of genetic ancestry
PPM015590 PGS002812
(GFATadjbmi3_weights_select)
PSS009992|
European Ancestry|
7,888 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: HDL cholesterol Beta (top 10 % vs reminder): 0.14 [0.07, 0.22] Age at enrollment, sex, and the first 10 principal components of genetic ancestry
PPM015591 PGS002812
(GFATadjbmi3_weights_select)
PSS009992|
European Ancestry|
7,888 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Triglycerides Beta (top 10 % vs reminder): -0.16 [-0.23, -0.08] Age at enrollment, sex, and the first 10 principal components of genetic ancestry
PPM015593 PGS002812
(GFATadjbmi3_weights_select)
PSS009992|
European Ancestry|
7,888 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Type 2 Diabetes Odds ratio (OR, top 10% vs reminder): 0.57 [0.41, 0.78] Age at enrollment, sex, and the first 10 principal components of genetic ancestry
PPM015594 PGS002812
(GFATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: HDL cholesterol Beta (top 10 % vs reminder): 0.16 [0.15, 0.18]
PPM015595 PGS002812
(GFATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Triglycerides Beta (top 10 % vs reminder): -0.16 [-0.18, -0.15]
PPM015596 PGS002812
(GFATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Alanine aminotransferase Beta (top 10 % vs reminder): -0.09 [-0.1, -0.07]
PPM015597 PGS002812
(GFATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Type 2 Diabetes Odds ratio (OR, top 10% vs reminder): 0.75 [0.7, 0.8]
PPM015598 PGS002812
(GFATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Coronary artery disease Odds ratio (OR, top 10% vs reminder): 0.89 [0.85, 0.93]
PPM015599 PGS002813
(VATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Type 2 Diabetes Odds ratio (OR, top 10% vs reminder): 1.18
PPM015600 PGS002813
(VATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Coronary artery disease Odds ratio (OR, top 10% vs reminder): 1.12
PPM015601 PGS002813
(VATadjbmi3_weights_select)
PSS009994|
Multi-ancestry (including European)|
447,486 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Hypertension Odds ratio (OR, top 10% vs reminder): 1.09
PPM015586 PGS002813
(VATadjbmi3_weights_select)
PSS009993|
Multi-ancestry (including European)|
7,795 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Visceral adipose tissue volumes adjusted for BMI and height β: 0.221 (0.016) Odds ratio (OR, top 5% vs reminder): 2.41 [1.7, 3.36] Age at time of imaging, sex, and the first 10 PCs of genetic ancestry
PPM015592 PGS002813
(VATadjbmi3_weights_select)
PSS009992|
European Ancestry|
7,888 individuals
PGP000391 |
Agrawal S et al. Nat Commun (2022)
Reported Trait: Triglycerides Beta (bottom 10 % vs reminder): -0.12 [-0.19, -0.05] Age at enrollment, sex, and the first 10 principal components of genetic ancestry
PPM015803 PGS002924
(ExPRSweb_FPG_FGovertime-corrected_LASSOSUM_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: -0.0308 (0.564) : 0.0004 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015806 PGS002925
(ExPRSweb_FPG_FGovertime-corrected_PT_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: -0.531 (0.592) : 0.00991 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015804 PGS002926
(ExPRSweb_FPG_FGovertime-corrected_PLINK_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: 0.294 (0.661) : 0.00282 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015802 PGS002927
(ExPRSweb_FPG_FGovertime-corrected_DBSLMM_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: -0.263 (0.601) : 0.00714 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015805 PGS002928
(ExPRSweb_FPG_FGovertime-corrected_PRSCS_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: -0.564 (0.613) : 0.00161 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015808 PGS002929
(ExPRSweb_FPG_MAGIC-FastingGlucose_LASSOSUM_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: 0.864 (0.634) : 0.00726 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015811 PGS002930
(ExPRSweb_FPG_MAGIC-FastingGlucose_PT_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: 1.6 (0.657) : 0.0076 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015809 PGS002931
(ExPRSweb_FPG_MAGIC-FastingGlucose_PLINK_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: 1.71 (0.658) : 0.00975 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015807 PGS002932
(ExPRSweb_FPG_MAGIC-FastingGlucose_DBSLMM_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: -0.414 (0.655) : 6e-05 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015810 PGS002933
(ExPRSweb_FPG_MAGIC-FastingGlucose_PRSCS_MGI_20211120)
PSS010004|
European Ancestry|
286 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Fasting Plasma Glucose β: 1.15 (0.65) : 0.011 SEX,AGE,Batch,PC1,PC2,PC3,PC4
PPM015823 PGS002944
(ExPRSweb_Glucose_FGovertime-corrected_LASSOSUM_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: -0.00088 (0.00289) : 5.33e-07 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015826 PGS002945
(ExPRSweb_Glucose_FGovertime-corrected_PT_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.00046 (0.0029) : 4.59e-07 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015824 PGS002946
(ExPRSweb_Glucose_FGovertime-corrected_PLINK_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: -0.00035 (0.0029) : 1.98e-08 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015822 PGS002947
(ExPRSweb_Glucose_FGovertime-corrected_DBSLMM_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.00449 (0.00291) : 2e-05 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015825 PGS002948
(ExPRSweb_Glucose_FGovertime-corrected_PRSCS_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: -0.00129 (0.0029) : 1.39e-06 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015828 PGS002949
(ExPRSweb_Glucose_MAGIC-FastingGlucose_LASSOSUM_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.084 (0.00289) : 0.00479 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015831 PGS002950
(ExPRSweb_Glucose_MAGIC-FastingGlucose_PT_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.0808 (0.00289) : 0.00442 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015829 PGS002951
(ExPRSweb_Glucose_MAGIC-FastingGlucose_PLINK_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.0808 (0.00289) : 0.00442 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015827 PGS002952
(ExPRSweb_Glucose_MAGIC-FastingGlucose_DBSLMM_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.00449 (0.00291) : 2e-05 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM015830 PGS002953
(ExPRSweb_Glucose_MAGIC-FastingGlucose_PRSCS_UKB_20211120)
PSS010028|
European Ancestry|
173,111 individuals
PGP000393 |
Ma Y et al. Am J Hum Genet (2022)
Reported Trait: Glucose β: 0.0818 (0.00289) : 0.00451 Sex,birthYear,genotyping.array,PC1,PC2,PC3,PC4
PPM016175 PGS003336
(CVGRS_FPG)
PSS010055|
East Asian Ancestry|
22,608 individuals
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Reported Trait: Fasting plasma glucose β: 0.20444
PPM016192 PGS003336
(CVGRS_FPG)
PSS010055|
East Asian Ancestry|
22,608 individuals
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Reported Trait: Type 2 diabetes OR: 1.46435
PPM016184 PGS003345
(ALLGRS_FPG)
PSS010055|
East Asian Ancestry|
22,608 individuals
PGP000405 |
Kim YJ et al. Nat Commun (2022)
Reported Trait: Fasting plasma glucose β: 0.20689
PPM016240 PGS003378
(PSA_PGS_128)
PSS010066|
European Ancestry|
5,725 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.169 Partial R2 (%, variation explained by the PGS only): 7.33 Age at PSA measurement, genetic ancestry PC1-PC10 computed within ancestry group Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016241 PGS003378
(PSA_PGS_128)
PSS010073|
Multi-ancestry (including European)|
25,917 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.207 Partial R2 (%, variation explained by the PGS only): 8.0 Age at PSA measurement, population-specific genetic ancestry PC1-PC10, genetic ancestry proportions (AFR + EAS) Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016242 PGS003378
(PSA_PGS_128)
PSS010072|
European Ancestry|
22,173 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.213 Partial R2 (%, variation explained by the PGS only): 8.78 Age at PSA measurement, genetic ancestry PC1-PC10 computed within ancestry group Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016243 PGS003378
(PSA_PGS_128)
PSS010070|
African Ancestry|
2,936 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.154 Partial R2 (%, variation explained by the PGS only): 3.36 Age at PSA measurement, population-specific genetic ancestry PC1-PC10, genetic ancestry proportions (AFR + EAS) Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016244 PGS003378
(PSA_PGS_128)
PSS010068|
African Ancestry|
1,173 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.163 Partial R2 (%, variation explained by the PGS only): 3.45 Age at PSA measurement, genetic ancestry PC1-PC10 computed within ancestry group Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016245 PGS003378
(PSA_PGS_128)
PSS010069|
African Ancestry|
1,763 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.146 Partial R2 (%, variation explained by the PGS only): 3.32 Age at PSA measurement, genetic ancestry PC1-PC10 computed within ancestry group Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016246 PGS003378
(PSA_PGS_128)
PSS010071|
East Asian Ancestry|
257 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.136 Partial R2 (%, variation explained by the PGS only): 2.45 Age at PSA measurement, genetic ancestry PC1-PC10 computed within ancestry group Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016239 PGS003378
(PSA_PGS_128)
PSS010067|
Multi-ancestry (including European)|
5,883 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.168 Partial R2 (%, variation explained by the PGS only): 7.16 Age at PSA measurement, population-specific genetic ancestry PC1-PC10, genetic ancestry proportions (AFR + EAS) Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1
PPM016248 PGS003379
(PSA_PGS_CSx)
PSS010066|
European Ancestry|
5,725 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.194 Partial R2 (%, variation explained by the PGS only): 8.6 Age at PSA measurement, within-population genetic ancestry PC1-PC10 Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,058,173 SNPs)
PPM016249 PGS003379
(PSA_PGS_CSx)
PSS010073|
Multi-ancestry (including European)|
25,917 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.258 Partial R2 (%, variation explained by the PGS only): 9.61 Age at PSA measurement, within-population genetic ancestry PC1-PC10, genetic ancestry proportions (AFR + EAS) Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,071,278 SNPs)
PPM016250 PGS003379
(PSA_PGS_CSx)
PSS010072|
European Ancestry|
22,173 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.283 Partial R2 (%, variation explained by the PGS only): 10.94 Age at PSA measurement, within-population genetic ancestry PC1-PC10 Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,071,278 SNPs)
PPM016251 PGS003379
(PSA_PGS_CSx)
PSS010070|
African Ancestry|
2,936 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.134 Partial R2 (%, variation explained by the PGS only): 3.11 Age at PSA measurement, within-population genetic ancestry PC1-PC10, genetic ancestry proportions (AFR) Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,071,278 SNPs)
PPM016252 PGS003379
(PSA_PGS_CSx)
PSS010068|
African Ancestry|
1,173 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.098 Partial R2 (%, variation explained by the PGS only): 1.64 Age at PSA measurement, within-population genetic ancestry PC1-PC10 Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,071,278 SNPs)
PPM016247 PGS003379
(PSA_PGS_CSx)
PSS010067|
Multi-ancestry (including European)|
5,883 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.186 Partial R2 (%, variation explained by the PGS only): 8.13 Age at PSA measurement, within-population genetic ancestry PC1-PC10, genetic ancestry proportions (AFR + EAS) Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,058,173 SNPs)
PPM016253 PGS003379
(PSA_PGS_CSx)
PSS010069|
African Ancestry|
1,763 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.157 Partial R2 (%, variation explained by the PGS only): 4.22 Age at PSA measurement, within-population genetic ancestry PC1-PC10 Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,071,278 SNPs)
PPM016254 PGS003379
(PSA_PGS_CSx)
PSS010071|
East Asian Ancestry|
257 individuals
PGP000412 |
Kachuri L et al. Nat Med (2023)
Reported Trait: Baseline/pre-randomization log(PSA) β: 0.258 Partial R2 (%, variation explained by the PGS only): 9.22 Age at PSA measurement, within-population genetic ancestry PC1-PC10 Beta per SD increase in PGS; PGS converted to standardized z-score with mean=0 and SD=1; SNPs and weights specific for use in this cohort (1,071,278 SNPs)
PPM017276 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: -0.004 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017299 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: -0.003 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017344 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index in obsese β: 0.02 (0.017) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017345 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index in non-obsese β: -0.013 (0.012) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017364 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea in obsese β: 0.039 (0.034) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017365 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea in non-obsese β: -0.04 (0.035) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017394 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index x obesity interaction β: 0.025 (1.026) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017404 PGS003466
(LDPred2_FI)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea x obesity interaction β: 1.091 (0.049) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017292 PGS003483
(LDPred2_WBC)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Respiratory event index β: -0.007 (0.01) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017315 PGS003483
(LDPred2_WBC)
PSS010185|
Hispanic or Latin American Ancestry|
1,115 individuals
PGP000456 |
Zhang Y et al. EBioMedicine (2022)
Reported Trait: Obstructive sleep apnea β: -0.023 (0.024) Age, sex, center, 5 genetic PCs, Hispanic/Latino background, BMI
PPM017454 PGS003526
(cont-decay-log_creatinine)
PSS010889|
European Ancestry|
19,112 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017538 PGS003526
(cont-decay-log_creatinine)
PSS010805|
European Ancestry|
3,939 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017622 PGS003526
(cont-decay-log_creatinine)
PSS010637|
European Ancestry|
6,170 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017706 PGS003526
(cont-decay-log_creatinine)
PSS010553|
Greater Middle Eastern Ancestry|
1,095 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017790 PGS003526
(cont-decay-log_creatinine)
PSS010217|
European Ancestry|
2,235 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017874 PGS003526
(cont-decay-log_creatinine)
PSS010469|
South Asian Ancestry|
5,949 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.08 sex, age, deprivation index, PC1-16
PPM017958 PGS003526
(cont-decay-log_creatinine)
PSS010385|
East Asian Ancestry|
1,705 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM018042 PGS003526
(cont-decay-log_creatinine)
PSS010301|
African Ancestry|
2,333 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018126 PGS003526
(cont-decay-log_creatinine)
PSS010721|
African Ancestry|
3,626 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: Creatinine partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017469 PGS003541
(cont-decay-log_leukocyte)
PSS010906|
European Ancestry|
19,415 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017553 PGS003541
(cont-decay-log_leukocyte)
PSS010822|
European Ancestry|
3,991 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017721 PGS003541
(cont-decay-log_leukocyte)
PSS010570|
Greater Middle Eastern Ancestry|
1,123 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.09 sex, age, deprivation index, PC1-16
PPM017805 PGS003541
(cont-decay-log_leukocyte)
PSS010234|
European Ancestry|
2,264 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.12 sex, age, deprivation index, PC1-16
PPM017889 PGS003541
(cont-decay-log_leukocyte)
PSS010486|
South Asian Ancestry|
6,026 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.1 sex, age, deprivation index, PC1-16
PPM018057 PGS003541
(cont-decay-log_leukocyte)
PSS010318|
African Ancestry|
2,330 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.03 sex, age, deprivation index, PC1-16
PPM018141 PGS003541
(cont-decay-log_leukocyte)
PSS010738|
African Ancestry|
3,682 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.02 sex, age, deprivation index, PC1-16
PPM017637 PGS003541
(cont-decay-log_leukocyte)
PSS010654|
European Ancestry|
6,278 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.11 sex, age, deprivation index, PC1-16
PPM017973 PGS003541
(cont-decay-log_leukocyte)
PSS010402|
East Asian Ancestry|
1,750 individuals
PGP000457 |
Ding Y et al. bioRxiv (2022)
|Pre
Reported Trait: White blood cell (leukocyte) count partial-R2: 0.05 sex, age, deprivation index, PC1-16
PPM018940 PGS003924
(INI30000)
PSS011109|
European Ancestry|
2,813 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.09098 [0.07103, 0.11094]
PGS R2 (no covariates): 0.07615 [0.05759, 0.0947]
Incremental R2 (full-covars): 0.07328
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018941 PGS003924
(INI30000)
PSS011113|
South Asian Ancestry|
1,433 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.09373 [0.06559, 0.12186]
PGS R2 (no covariates): 0.08974 [0.06208, 0.11739]
Incremental R2 (full-covars): 0.08665
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018942 PGS003924
(INI30000)
PSS011155|
African Ancestry|
1,157 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.05083 [0.02681, 0.07484]
PGS R2 (no covariates): 0.04407 [0.02155, 0.06659]
Incremental R2 (full-covars): 0.04309
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018943 PGS003924
(INI30000)
PSS011166|
Multi-ancestry (excluding European)|
7,746 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.09843 [0.08604, 0.11081]
PGS R2 (no covariates): 0.08243 [0.0709, 0.09397]
Incremental R2 (full-covars): 0.07062
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM018939 PGS003924
(INI30000)
PSS011136|
European Ancestry|
65,932 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: White blood cell (leukocyte) count : 0.08905 [0.08496, 0.09315]
PGS R2 (no covariates): 0.07643 [0.07259, 0.08028]
Incremental R2 (full-covars): 0.07561
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019069 PGS003950
(INI30280)
PSS011143|
European Ancestry|
64,816 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.10325 [0.09891, 0.10759]
PGS R2 (no covariates): 0.09279 [0.08863, 0.09695]
Incremental R2 (full-covars): 0.09226
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019070 PGS003950
(INI30280)
PSS011100|
European Ancestry|
2,768 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.09801 [0.07746, 0.11857]
PGS R2 (no covariates): 0.09403 [0.07381, 0.11425]
Incremental R2 (full-covars): 0.09203
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019071 PGS003950
(INI30280)
PSS011111|
South Asian Ancestry|
1,393 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.06095 [0.03744, 0.08446]
PGS R2 (no covariates): 0.05417 [0.03184, 0.07649]
Incremental R2 (full-covars): 0.05046
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019072 PGS003950
(INI30280)
PSS011152|
African Ancestry|
1,124 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.04778 [0.02442, 0.07113]
PGS R2 (no covariates): 0.03953 [0.0181, 0.06096]
Incremental R2 (full-covars): 0.0407
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM019073 PGS003950
(INI30280)
PSS011170|
Multi-ancestry (excluding European)|
7,574 individuals
PGP000502 |
Tanigawa Y et al. AJHG (2023)
Reported Trait: Immature reticulocyte fraction : 0.10912 [0.09624, 0.12201]
PGS R2 (no covariates): 0.08182 [0.07032, 0.09332]
Incremental R2 (full-covars): 0.08036
age, sex, age^2, age*sex, Townsend deprivation index, genotype PCs (PC1-PC18)
PPM020443 PGS004328
(X30600.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Albumin PGS R2 (no covariates): 0.18905
PPM020449 PGS004334
(X30700.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: Creatinine (umol/L) PGS R2 (no covariates): 0.2141
PPM020460 PGS004345
(X30000.score)
PSS011364|
European Ancestry|
56,192 individuals
PGP000561 |
Jung H et al. Commun Biol (2024)
Reported Trait: White blood cell (leukocyte) count PGS R2 (no covariates): 0.24739
PPM020932 PGS004707
(Albumin_PRSmix_eur)
PSS011480|
European Ancestry|
4,879 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Albumin Incremental R2 (Full model versus model with only covariates): 0.029 [0.019, 0.038] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020933 PGS004708
(Albumin_PRSmix_sas)
PSS011460|
South Asian Ancestry|
6,864 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Albumin Incremental R2 (Full model versus model with only covariates): 0.029 [0.021, 0.037] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020934 PGS004709
(Albumin_PRSmixPlus_eur)
PSS011480|
European Ancestry|
4,879 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Albumin Incremental R2 (Full model versus model with only covariates): 0.042 [0.031, 0.053] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020935 PGS004710
(Albumin_PRSmixPlus_sas)
PSS011460|
South Asian Ancestry|
6,864 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Albumin Incremental R2 (Full model versus model with only covariates): 0.033 [0.025, 0.041] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020972 PGS004747
(creatinine_PRSmix_eur)
PSS011488|
European Ancestry|
5,758 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Serum creatinine Incremental R2 (Full model versus model with only covariates): 0.046 [0.035, 0.056] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020973 PGS004748
(creatinine_PRSmix_sas)
PSS011489|
South Asian Ancestry|
6,954 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Serum creatinine Incremental R2 (Full model versus model with only covariates): 0.029 [0.022, 0.037] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020974 PGS004749
(creatinine_PRSmixPlus_eur)
PSS011488|
European Ancestry|
5,758 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Serum creatinine Incremental R2 (Full model versus model with only covariates): 0.053 [0.042, 0.064] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM020975 PGS004750
(creatinine_PRSmixPlus_sas)
PSS011489|
South Asian Ancestry|
6,954 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: Serum creatinine Incremental R2 (Full model versus model with only covariates): 0.035 [0.027, 0.044] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021080 PGS004855
(WBC_PRSmix_eur)
PSS011512|
European Ancestry|
5,118 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.075 [0.061, 0.089] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021081 PGS004856
(WBC_PRSmix_sas)
PSS011477|
South Asian Ancestry|
7,058 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.084 [0.072, 0.097] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021082 PGS004857
(WBC_PRSmixPlus_eur)
PSS011512|
European Ancestry|
5,118 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.085 [0.071, 0.1] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021083 PGS004858
(WBC_PRSmixPlus_sas)
PSS011477|
South Asian Ancestry|
7,058 individuals
PGP000604 |
Truong B et al. Cell Genom (2024)
Reported Trait: White blood count Incremental R2 (Full model versus model with only covariates): 0.089 [0.076, 0.102] age, sex, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10 Incremental R2 (Full model versus model with only covariates)
PPM021356 PGS004906
(PRS60_TSH)
PSS011701|
European Ancestry|
7,231 individuals
PGP000639 |
Mulder TA et al. Eur J Endocrinol (2023)
Reported Trait: Thyroid stimulating hormone concentration β: 0.16 (0.01)
PPM021357 PGS004906
(PRS60_TSH)
PSS011701|
European Ancestry|
7,231 individuals
PGP000639 |
Mulder TA et al. Eur J Endocrinol (2023)
Reported Trait: Free thyroxine (FT4) concentration β: -0.04 (0.01)
PPM022212 PGS005098
(psa2024_prs_318)
PSS011848|
African Ancestry|
1,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.065 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022216 PGS005098
(psa2024_prs_318)
PSS011849|
Additional Asian Ancestries|
257 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.038 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022224 PGS005098
(psa2024_prs_318)
PSS011844|
African Ancestry|
2,469 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.049 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022228 PGS005098
(psa2024_prs_318)
PSS011847|
Additional Diverse Ancestries|
1,783 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.073 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022232 PGS005098
(psa2024_prs_318)
PSS011845|
Hispanic or Latin American Ancestry|
1,336 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.08 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022208 PGS005098
(psa2024_prs_318)
PSS011850|
European Ancestry|
22,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.095 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022220 PGS005098
(psa2024_prs_318)
PSS011846|
European Ancestry|
11,922 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.096 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022209 PGS005099
(psa2024_prs_447)
PSS011850|
European Ancestry|
22,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.109 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022213 PGS005099
(psa2024_prs_447)
PSS011848|
African Ancestry|
1,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.07 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022217 PGS005099
(psa2024_prs_447)
PSS011849|
Additional Asian Ancestries|
257 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.035 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022221 PGS005099
(psa2024_prs_447)
PSS011846|
European Ancestry|
11,922 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.113 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022225 PGS005099
(psa2024_prs_447)
PSS011844|
African Ancestry|
2,469 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.053 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022229 PGS005099
(psa2024_prs_447)
PSS011847|
Additional Diverse Ancestries|
1,783 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.086 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022233 PGS005099
(psa2024_prs_447)
PSS011845|
Hispanic or Latin American Ancestry|
1,336 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.096 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022210 PGS005100
(psa2024_prs_disc)
PSS011850|
European Ancestry|
22,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.124 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022214 PGS005100
(psa2024_prs_disc)
PSS011848|
African Ancestry|
1,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.073 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022218 PGS005100
(psa2024_prs_disc)
PSS011849|
Additional Asian Ancestries|
257 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.086 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022222 PGS005100
(psa2024_prs_disc)
PSS011846|
European Ancestry|
11,922 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.138 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022226 PGS005100
(psa2024_prs_disc)
PSS011844|
African Ancestry|
2,469 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.055 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022230 PGS005100
(psa2024_prs_disc)
PSS011847|
Additional Diverse Ancestries|
1,783 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.133 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022234 PGS005100
(psa2024_prs_disc)
PSS011845|
Hispanic or Latin American Ancestry|
1,336 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.135 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022211 PGS005101
(psa2024_prs_joint)
PSS011850|
European Ancestry|
22,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.139 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022215 PGS005101
(psa2024_prs_joint)
PSS011848|
African Ancestry|
1,173 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.072 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022219 PGS005101
(psa2024_prs_joint)
PSS011849|
Additional Asian Ancestries|
257 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.107 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022223 PGS005101
(psa2024_prs_joint)
PSS011846|
European Ancestry|
11,922 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.147 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022227 PGS005101
(psa2024_prs_joint)
PSS011844|
African Ancestry|
2,469 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.058 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022231 PGS005101
(psa2024_prs_joint)
PSS011847|
Additional Diverse Ancestries|
1,783 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.14 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022235 PGS005101
(psa2024_prs_joint)
PSS011845|
Hispanic or Latin American Ancestry|
1,336 individuals
PGP000692 |
Hoffmann TJ et al. Nat Genet (2025)
Reported Trait: log(PSA) Partial R2: 0.135 age, ancestry pcs Partial r2: variation explained by the PGS only, but derived from a fully adjusted model that includes listed covariates
PPM022292 PGS005107
(PGS-PSA111)
PSS011904|
Multi-ancestry (including European)|
3,110 individuals
PGP000696 |
Shi M et al. EBioMedicine (2023)
Reported Trait: Prostate specific antigen level > 4 ng/mL HR: 1.22 [1.11, 1.35] Age at first PSA measurement, 10 PCs

Evaluated Samples

PGS Sample Set ID
(PSS)
Phenotype Definitions and Methods Participant Follow-up Time Sample Numbers Age of Study Participants Sample Ancestry Additional Ancestry Description Cohort(s) Additional Sample/Cohort Information
PSS009156 3,593 individuals European Poland (NE Europe) UKB
PSS010654 6,278 individuals,
45.0 % Male samples
Mean = 54.5 years
Sd = 8.4 years
European Italian UKB
PSS009871 6,149 individuals African unspecified UKB
PSS009872 893 individuals East Asian UKB
PSS009873 42,026 individuals European Non-British European UKB
PSS009874 7,769 individuals South Asian UKB
PSS011701 2,169 individuals,
50.8 % Male samples
Median = 6.0 years
95% Range = [5.7, 7.5] years
European Generation_R
PSS011701 3,382 individuals,
52.0 % Male samples
Median = 7.5 years
95% Range = [7.3, 8.9] years
European ALSPAC
PSS011701 1,680 individuals,
49.3 % Male samples
Median = 12.1 years
95% Range = [12.0, 12.5] years
European BLTS
PSS011441
[
  • 165 cases
  • , 339 controls
]
,
82.0 % Male samples
Mean = 27.5 years African unspecified PDAY
PSS011442
[
  • 181 cases
  • , 383 controls
]
,
77.0 % Male samples
Mean = 26.7 years European PDAY
PSS009191 3,924 individuals European Poland (NE Europe) UKB
PSS000290 2,314 individuals European
(French Canadian)
CARTaGENE
PSS000291 39,260 individuals European INTERVAL
PSS000729 5,573 individuals African unspecified UKB
PSS000730 984 individuals East Asian UKB
PSS000731 21,516 individuals European Non-British White UKB
PSS000732 6,687 individuals South Asian UKB
PSS000733 58,196 individuals European
(British)
UKB
PSS010004 GLUCOSE, FASTING; Quantitative 286 individuals European MGI
PSS011904 Median = 6.2 years
IQR = [3.7, 10.9] years
3,110 individuals,
100.0 % Male samples
Median = 56.6 years
IQR = [51.4, 61.5] years
European, African unspecified BioVU No prostate cancer and prostate specific antigen level < 4 mg/mL at baseline
PSS009213 3,950 individuals European Poland (NE Europe) UKB
PSS000739 5,786 individuals African unspecified UKB
PSS000740 1,045 individuals East Asian UKB
PSS000741 22,839 individuals European Non-British White UKB
PSS000742 6,998 individuals South Asian UKB
PSS000743 62,013 individuals European
(British)
UKB
PSS008710 5,803 individuals European Italy (South Europe) UKB
PSS010721 3,626 individuals,
46.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS009225 4,002 individuals European Poland (NE Europe) UKB
PSS010217 2,235 individuals,
45.0 % Male samples
Mean = 58.1 years
Sd = 7.1 years
European Ashkenazi UKB
PSS010028 Field ID: 30740; Quantitative 173,111 individuals European UKB
PSS009237 3,970 individuals European Poland (NE Europe) UKB
PSS000152 40,466 individuals,
49.0 % Male samples
Mean = 43.84 years
Range = [18.0, 76.4] years
European INTERVAL
PSS010738 3,682 individuals,
47.0 % Male samples
Mean = 51.9 years
Sd = 8.1 years
African unspecified Nigerian UKB
PSS010234 2,264 individuals,
45.0 % Male samples
Mean = 58.0 years
Sd = 7.1 years
European Ashkenazi UKB
PSS008745 6,298 individuals European Italy (South Europe) UKB
PSS000782 6,015 individuals African unspecified UKB
PSS000783 1,080 individuals East Asian UKB
PSS000784 23,562 individuals European Non-British White UKB
PSS000785 7,336 individuals South Asian UKB
PSS000786 63,745 individuals European
(British)
UKB
PSS000178 81,606 individuals,
46.0 % Male samples
Mean = 57.23 years
Range = [38.87, 70.97] years
European UKB
PSS000800 2,129 individuals European Participants self-identifying as white MESA
PSS008767 6,322 individuals European Italy (South Europe) UKB
PSS008262 5,478 individuals South Asian India (South Asia) UKB
PSS008779 6,437 individuals European Italy (South Europe) UKB
PSS010055 22,608 individuals East Asian KBA, KoGES
PSS011460 6,864 individuals South Asian G&H
PSS008791 6,432 individuals European Italy (South Europe) UKB
PSS010805 3,939 individuals,
38.0 % Male samples
Mean = 54.4 years
Sd = 7.5 years
European Polish UKB
PSS000835 2,117 individuals European Participants self-identifying as white MESA
PSS010301 2,333 individuals,
37.0 % Male samples
Mean = 52.5 years
Sd = 8.1 years
African American or Afro-Caribbean Caribbean UKB
PSS011477 7,058 individuals South Asian G&H
PSS008297 5,937 individuals South Asian India (South Asia) UKB
PSS011480 4,879 individuals European AllofUs
PSS010822 3,991 individuals,
38.0 % Male samples
Mean = 54.3 years
Sd = 7.5 years
European Polish UKB
PSS011488 5,758 individuals European AllofUs
PSS011489 6,954 individuals South Asian G&H
PSS006891 6,139 individuals African unspecified UKB
PSS006892 1,655 individuals East Asian UKB
PSS006893 24,174 individuals European non-white British ancestry UKB
PSS006894 7,520 individuals South Asian UKB
PSS011301
[
  • 821 cases
  • , 461 controls
]
South Asian
(Indian)
WellGen
PSS006895 65,638 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS010318 2,330 individuals,
37.0 % Male samples
Mean = 52.4 years
Sd = 8.0 years
African American or Afro-Caribbean Caribbean UKB
PSS010066 Baseline/pre-randomization PSA in men without prostate cancer 5,725 individuals,
100.0 % Male samples
European
(Predominantly European)
European (EUR) ancestry cluster based on SNPWEIGHTS score >=0.80; median EUR = 0.998; mean EUR = 0.991 PCPT Minimum enrollment age was 55 years with serum PSA <= 3 ng/mL
PSS010067 Baseline/pre-randomization PSA in men without prostate cancer 5,883 individuals,
100.0 % Male samples
European, Not reported Multi-ancestry pooled sample PCPT Minimum enrollment age was 55 years with serum PSA <= 3 ng/mL
PSS010068 Baseline/pre-randomization PSA in men without prostate cancer 1,173 individuals,
100.0 % Male samples
African American or Afro-Caribbean
(Predominantly West African)
West African (AFR) ancestry cluster based on SNPWEIGHTS score >=0.80; median AFR = 0.855; mean AFR = 0.861 SELECT Minimum enrollment age was 50 years for African Americans and 55 years for all other men; serum PSA <= 4 ng/mL
PSS008319 6,003 individuals South Asian India (South Asia) UKB
PSS010070 Baseline/pre-randomization PSA in men without prostate cancer 2,936 individuals,
100.0 % Male samples
African American or Afro-Caribbean
(West African admixed)
West African (AFR) ancestry score >0.20 based on SNPWEIGHTS; median AFR = 0.765; mean AFR = 0.705 SELECT Minimum enrollment age was 50 years for African Americans and 55 years for all other men; serum PSA <= 4 ng/mL
PSS010069 Baseline/pre-randomization PSA in men without prostate cancer 1,763 individuals,
100.0 % Male samples
African American or Afro-Caribbean
(West African admixed)
0.20 < West African (AFR) ancestry score <0.80 based on SNPWEIGHTS; median AFR = 0.673; mean AFR = 0.602 SELECT Minimum enrollment age was 50 years for African Americans and 55 years for all other men; serum PSA <= 4 ng/mL
PSS010072 Baseline/pre-randomization PSA in men without prostate cancer 22,173 individuals,
100.0 % Male samples
European
(Predominantly European)
European (EUR) ancestry cluster based on SNPWEIGHTS score >=0.80; median EUR = 0.995; mean EUR = 0.986 SELECT Minimum enrollment age was 50 years for African Americans and 55 years for all other men; serum PSA <= 4 ng/mL
PSS010073 Baseline/pre-randomization PSA in men without prostate cancer 25,917 individuals,
100.0 % Male samples
European, African American or Afro-Caribbean Multi-ancestry pooled sample SELECT Minimum enrollment age was 50 years for African Americans and 55 years for all other men; serum PSA <= 4 ng/mL
PSS010071 Baseline/pre-randomization PSA in men without prostate cancer 257 individuals,
100.0 % Male samples
East Asian
(Predominantly East Asian)
East Asian (EAS) ancestry cluster based on SNPWEIGHTS score >=0.80; median EAS = 0.978; mean EAS = 0.972 SELECT Minimum enrollment age was 50 years for African Americans and 55 years for all other men; serum PSA <= 4 ng/mL
PSS011512 5,118 individuals European AllofUs
PSS008331 6,078 individuals South Asian India (South Asia) UKB
PSS006916 5,573 individuals African unspecified UKB
PSS006917 1,436 individuals East Asian UKB
PSS006918 21,514 individuals European non-white British ancestry UKB
PSS006919 6,643 individuals South Asian UKB
PSS006920 58,191 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS007826 2,159 individuals African American or Afro-Caribbean Carribean UKB
PSS009653 1,010 individuals European NR
PSS008343 6,020 individuals South Asian India (South Asia) UKB
PSS011100 2,768 individuals European
(non-white British ancestry)
UKB
PSS011109 2,813 individuals European
(non-white British ancestry)
UKB
PSS009382 17,457 individuals European UK (+ Ireland) UKB
PSS011111 1,393 individuals South Asian UKB
PSS011113 1,433 individuals South Asian UKB
PSS010889 19,112 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS007861 2,294 individuals African American or Afro-Caribbean Carribean UKB
PSS010385 1,705 individuals,
33.0 % Male samples
Mean = 52.4 years
Sd = 7.8 years
East Asian Chinese UKB
PSS010906 19,415 individuals,
46.0 % Male samples
Mean = 56.9 years
Sd = 7.9 years
European white British UKB
PSS011136 65,932 individuals European
(white British ancestry)
UKB
PSS011143 64,816 individuals European
(white British ancestry)
UKB
PSS010402 1,750 individuals,
33.0 % Male samples
Mean = 52.5 years
Sd = 7.8 years
East Asian Chinese UKB
PSS009417 19,121 individuals European UK (+ Ireland) UKB
PSS007883 2,345 individuals African American or Afro-Caribbean Carribean UKB
PSS011152 1,124 individuals African unspecified UKB
PSS011155 1,157 individuals African unspecified UKB
PSS007895 2,343 individuals African American or Afro-Caribbean Carribean UKB
PSS011166 7,746 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS009439 18,993 individuals European UK (+ Ireland) UKB
PSS008930 3,401 individuals African unspecified Nigeria (West Africa) UKB
PSS007907 2,382 individuals African American or Afro-Caribbean Carribean UKB
PSS011170 7,574 individuals East Asian, Other admixed ancestry East Asian, Other admixed ancestry UKB
PSS009451 19,419 individuals European UK (+ Ireland) UKB
PSS000911 13,989 individuals Greater Middle Eastern (Middle Eastern, North African or Persian)
(Qatari)
QBB
PSS009463 19,363 individuals European UK (+ Ireland) UKB
PSS007031 5,973 individuals African unspecified UKB
PSS007032 1,623 individuals East Asian UKB
PSS007033 23,680 individuals European non-white British ancestry UKB
PSS007034 7,321 individuals South Asian UKB
PSS007035 64,524 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS008965 3,602 individuals African unspecified Nigeria (West Africa) UKB
PSS010469 5,949 individuals,
54.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS011846 Prostate specific antigen 11,922 individuals,
100.0 % Male samples
European AllofUs
PSS007056 6,238 individuals African unspecified UKB
PSS007057 1,642 individuals East Asian UKB
PSS007058 24,108 individuals European non-white British ancestry UKB
PSS007059 7,464 individuals South Asian UKB
PSS007060 65,536 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS008987 3,655 individuals African unspecified Nigeria (West Africa) UKB
PSS010486 6,026 individuals,
55.0 % Male samples
Mean = 53.3 years
Sd = 8.4 years
South Asian Indian UKB
PSS011364 56,192 individuals European UKB
PSS005016 119 individuals African unspecified UKB
PSS005017 41 individuals East Asian UKB
PSS007066 5,658 individuals African unspecified UKB
PSS007067 1,472 individuals East Asian UKB
PSS007068 21,759 individuals European non-white British ancestry UKB
PSS007069 6,786 individuals South Asian UKB
PSS007070 59,097 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS005018 471 individuals European non-white British ancestry UKB
PSS005019 164 individuals South Asian UKB
PSS005020 1,275 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS008484 1,036 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS008999 3,711 individuals African unspecified Nigeria (West Africa) UKB
PSS009011 3,772 individuals African unspecified Nigeria (West Africa) UKB
PSS009992 7,888 individuals European
(White)
ARIC
PSS009993 7,795 individuals European, African unspecified, East Asian, South Asian, Not reported White British, Black, East Asian, South Asian, Other UKB 20% of original GWAS cohort
PSS009994 447,486 individuals European, African unspecified, East Asian, South Asian, Not reported White British, Black, East Asian, South Asian, Other UKB Unimaged cohort of UKB
PSS003585 16,579 individuals African American or Afro-Caribbean 10 cohorts
  • ARIC
  • ,BioMe
  • ,CHS
  • ,FamHS
  • ,GENOA
  • ,GeneSTAR
  • ,HANDLS
  • ,JHS
  • ,MESA
  • ,WHI
PSS003586 31,669 individuals East Asian
(Japanese, Chinese, Malay, Filipino, Han Chinese)
13 cohorts
  • AASC
  • ,CAGE
  • ,CHNS
  • ,CLHNS
  • ,CRC
  • ,KARE
  • ,Living-Biobank
  • ,MESA
  • ,NHAPC
  • ,Nagahama_Study
  • ,SBCS
  • ,SMHS
  • ,SP2
PSS003587 45,038 individuals European ARIC, LifeLines, METSIM, TwinGene Additional cases and controls were obtained from Fenland-OMICS.
PSS003588 8,101 individuals African American or Afro-Caribbean 9 cohorts
  • ARIC
  • ,CHS
  • ,FamHS
  • ,GENOA
  • ,GeneSTAR
  • ,HANDLS
  • ,JHS
  • ,MESA
  • ,WHI
PSS003589 26,691 individuals East Asian
(Japanese, Filipino, Chinese, Han Chinese)
10 cohorts
  • AASC
  • ,CAGE
  • ,CHNS
  • ,CRC
  • ,KARE
  • ,MESA
  • ,NHAPC
  • ,Nagahama_Study
  • ,SMHS
  • ,SP2
PSS003590 29,123 individuals European ARIC, METSIM, NTR, PROCARDIS
PSS008519 1,127 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS007116 6,097 individuals African unspecified UKB
PSS007117 1,614 individuals East Asian UKB
PSS007118 23,752 individuals European non-white British ancestry UKB
PSS007119 7,427 individuals South Asian UKB
PSS007120 64,425 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS008541 1,124 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010553 1,095 individuals,
60.0 % Male samples
Mean = 51.9 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS007131 6,097 individuals African unspecified UKB
PSS007132 1,615 individuals East Asian UKB
PSS007133 23,762 individuals European non-white British ancestry UKB
PSS007134 7,427 individuals South Asian UKB
PSS007135 64,433 individuals European white British ancestry UKB Testing cohort (heldout set)
PSS008040 1,560 individuals East Asian China (East Asia) UKB
PSS008553 1,153 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS010570 1,123 individuals,
59.0 % Male samples
Mean = 52.0 years
Sd = 8.0 years
Greater Middle Eastern (Middle Eastern, North African or Persian) Iranian UKB
PSS008565 1,146 individuals Greater Middle Eastern (Middle Eastern, North African or Persian) Iran (Middle East) UKB
PSS000376 We measured weight and height using regularly calibrated equipment (scales and stadiometer models 770 and 214, respectively; Seca, Hamburg, Germany). Body mass index (BMI; in kg/m2) was also calculated. We measured waist circumference at the midpoint between the lower costal margin and the iliac crest. The hip circumference was measured over both trochanter majores (tangible bone on the outside of the hip joint). Waist to hip ratio was also calculated. We performed all measurements in duplicate, and, if the difference between these measurements exceeded a predefined value, a third measurement was performed. All available measurements were used to calculate means. Heart rate, systolic (SBP) and diastolic (DBP) blood pressure were measured in duplicate with a Dinamap Critikon 1846SX (Critikon Inc, Tampa, FL), from which we calculated means. At the third visit, fasting blood sample of participants were drawn for the measurement of glucose (Roche Diagnostics, Basel, Switzerland), insulin (Diagnostic Systems Laboratories Inc, Webster, TX), HbA1c (high performance liquid chromatography, Variant, Bio-Rad), triglycerides, total cholesterol, HDL cholesterol (Roche Diagnostics) and LDL cholesterol (calculated according to Friedewald’s equation5), as well as alanine transaminase (Photometric determination according to the reference method of the International Federation of Clinical Chemistry (IFCC)6) and lipoprotein(a) (Nephelometric method, BN2, DadeBehring). Serum creatinine was measured by photometric determination with the Jaffé method without deproteinisation (Ecoline® MEGA, DiaSys Diagnostic Systems GmbH. Merck). eGFR for adolescents who were younger than 18 years old was calculated using the Schwartz formula.7 High‐sensitivity C‐reactive protein (hsCRP) was determined using an immunonephelometric method, BN2 (CardioPhase hsCRP, Siemens) with a lower detection limit of 0.175 mg/L. Total IgE measurements were performed using the Phadia Immunocap 100 system with fluoroenzyme immunoassay (FEIA). 1,354 individuals,
47.56 % Male samples
Mean = 16.22 years
Sd = 0.66 years
European TRAILS
PSS010185 1,115 individuals,
41.1 % Male samples
Mean = 46.18 years Hispanic or Latin American HCHS, SOL
PSS001084 Moderate Age-Related Diabetes (MARD) vs. controls
[
  • 2,853 cases
  • , 2,744 controls
]
European Swedish ANDIS
PSS001085 Moderate Obesity-related Diabetes (MOD) vs. controls
[
  • 1,372 cases
  • , 2,744 controls
]
European Swedish ANDIS
PSS001086 Severe Autoimmune Diabetes (SAID) vs. controls
[
  • 450 cases
  • , 2,744 controls
]
European Swedish ANDIS
PSS001087 Severe Insulin-Deficient Diabetes (SIDD) vs. controls
[
  • 1,186 cases
  • , 2,744 controls
]
European Swedish ANDIS
PSS001088 Severe Insulin-Resistant Diabetes (SIRD) vs. controls
[
  • 1,125 cases
  • , 2,744 controls
]
European Swedish ANDIS
PSS008074 1,722 individuals East Asian China (East Asia) UKB
PSS011844 Prostate specific antigen 2,469 individuals,
100.0 % Male samples
African unspecified AllofUs
PSS011845 Prostate specific antigen 1,336 individuals,
100.0 % Male samples
Hispanic or Latin American AllofUs
PSS011847 Prostate specific antigen 1,783 individuals,
100.0 % Male samples
Other AllofUs
PSS011848 Prostate specific antigen 1,173 individuals,
100.0 % Male samples
African unspecified SELECT
PSS011849 Prostate specific antigen 257 individuals,
100.0 % Male samples
Asian unspecified SELECT
PSS000627 5,573 individuals African unspecified UKB
PSS000628 984 individuals East Asian UKB
PSS000629 21,516 individuals European Non-British White UKB
PSS000630 6,687 individuals South Asian UKB
PSS000631 58,196 individuals European
(British)
UKB
PSS011850 Prostate specific antigen 22,173 individuals,
100.0 % Male samples
European SELECT
PSS008096 1,716 individuals East Asian China (East Asia) UKB
PSS008108 1,762 individuals East Asian China (East Asia) UKB
PSS010637 6,170 individuals,
45.0 % Male samples
Mean = 54.4 years
Sd = 8.4 years
European Italian UKB
PSS000667 6,016 individuals African unspecified UKB
PSS000668 1,081 individuals East Asian UKB
PSS008120 1,743 individuals East Asian China (East Asia) UKB
PSS000674 23,576 individuals European Non-British White UKB
PSS000675 7,339 individuals South Asian UKB
PSS000676 63,758 individuals European
(British)
UKB